cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379621 Numerators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).

This page as a plain text file.
%I A379621 #9 Dec 28 2024 09:08:59
%S A379621 1,0,1,1,5,-1,1,-7,11,-47,-13,-61,-29,-157,-209,-3139,-5123,-1109,
%T A379621 -2887,-3547,-2887,-3679,-3319,-4111,-26137,-30757,-5597,-2071,-277,
%U A379621 -343,-1627,-12269,-2269,-625,-391,-1261,-3629,-3937,-1853,-4979,-19223,-21533,-20873,-21797
%N A379621 Numerators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).
%H A379621 Amiram Eldar, <a href="/A379621/b379621.txt">Table of n, a(n) for n = 1..1000</a>
%H A379621 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.14, p. 35.
%F A379621 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A206369(k)).
%F A379621 a(n)/A379622(n) = A * log(n) + B + O(1/n^u), where u > 0, and A and B are constants.
%e A379621 Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -7/60, 11/420, -47/210, -13/105, -61/210, ...
%t A379621 f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/beta[n], {n, 1, 50}]]]
%o A379621 (PARI) beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
%o A379621 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / beta(k); print1(numerator(s), ", "))};
%Y A379621 Cf. A206369, A370905, A370906, A379619, A379622 (denominators).
%K A379621 sign,easy,frac
%O A379621 1,5
%A A379621 _Amiram Eldar_, Dec 27 2024