A379622 Denominators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).
1, 1, 2, 6, 12, 12, 12, 60, 420, 210, 105, 210, 140, 420, 840, 9240, 18480, 2640, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 3696, 528, 528, 2640, 18480, 3696, 924, 616, 1848, 5544, 5544, 2772, 6930, 27720, 27720, 27720, 27720, 27720, 27720, 637560
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.14, p. 35.
Programs
-
Mathematica
f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/beta[n], {n, 1, 50}]]]
-
PARI
beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / beta(k); print1(denominator(s), ", "))};
Formula
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A206369(k)).