This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379623 #47 Feb 17 2025 22:37:09 %S A379623 1,1,1,1,1,4,1,5,6,1,12,22,1,18,71,18,1,37,193,138,1,60,490,661,73,1, %T A379623 117,1221,2547,769,1,200,3011,8417,5189,255,1,379,7393,26164,25920, %U A379623 3743,1,669,18025,78074,108834,32038,950,1,1250,43847,229881,408217,201956,16819 %N A379623 Irregular triangle read by rows: T(n,k) is the number of free polyominoes with n cells and width k, n >= 1, 1 <= k <= ceiling(n/2). %C A379623 The width here is the shorter of the two dimensions. %H A379623 John Mason, <a href="/A379623/b379623.txt">Table of n, a(n) for n = 1..90</a> (first 18 rows) %H A379623 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %e A379623 Triangle begins: %e A379623 1; %e A379623 1; %e A379623 1, 1; %e A379623 1, 4; %e A379623 1, 5, 6; %e A379623 1, 12, 22; %e A379623 1, 18, 71, 18; %e A379623 1, 37, 193, 138; %e A379623 1, 60, 490, 661, 73; %e A379623 1, 117, 1221, 2547, 769; %e A379623 1, 200, 3011, 8417, 5189, 255; %e A379623 1, 379, 7393, 26164, 25920, 3743; %e A379623 1, 669, 18025, 78074, 108834, 32038, 950; %e A379623 1, 1250, 43847, 229881, 408217, 201956, 16819; %e A379623 ... %e A379623 Illustration for n = 5: %e A379623 The free polyominoes with five cells are also called free pentominoes. %e A379623 For k = 1 there is only one free pentomino of width 1 as shown below, so T(5,1) = 1. %e A379623 _ %e A379623 |_| %e A379623 |_| %e A379623 |_| %e A379623 |_| %e A379623 |_| %e A379623 . %e A379623 For k = 2 there are five free pentominoes of width 2 as shown below, so T(5,2) = 5. %e A379623 _ _ _ %e A379623 |_| _|_| _|_| _ _ _ _ %e A379623 |_| |_|_| |_|_| |_|_| |_|_| %e A379623 |_|_ |_| |_| |_|_| |_|_ %e A379623 |_|_| |_| |_| |_| |_|_| %e A379623 . %e A379623 For k = 3 there are six free pentominoes of width 3 as shown below, so T(5,3) = 6. %e A379623 _ _ _ _ _ _ _ _ _ _ %e A379623 _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| %e A379623 |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ %e A379623 |_| |_| |_|_|_| |_|_| |_| |_|_| %e A379623 . %e A379623 Therefore the 5th row of the triangle is [1, 5, 6] and the row sum is A000105(5) = 12. %e A379623 . %Y A379623 Row sums give A000105(n). %Y A379623 Row lengths give A110654(n). %Y A379623 For free polyominoes of length k see A379624. %Y A379623 Cf. A057051, A352720, A379627, A379628. %K A379623 nonn,tabf %O A379623 1,6 %A A379623 _Omar E. Pol_, Jan 07 2025 %E A379623 a(21)-a(56) from _Pontus von Brömssen_, Jan 11 2025