This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379624 #53 Feb 17 2025 22:37:18 %S A379624 1,0,1,0,1,1,0,1,3,1,0,0,8,3,1,0,0,8,21,5,1,0,0,7,59,36,5,1,0,0,3,137, %T A379624 167,54,7,1,0,0,1,223,669,307,77,7,1,0,0,0,287,2089,1627,539,103,9,1, %U A379624 0,0,0,255,5472,7126,3237,839,134,9,1,0,0,0,169,11919,27504,16706,5851,1271,168,11,1 %N A379624 Triangle read by rows: T(n,k) is the number of free polyominoes with n cells and length k, n >= 1, k = 1..n. %C A379624 The length here is the longer of the two dimensions. %H A379624 John Mason, <a href="/A379624/b379624.txt">Table of n, a(n) for n = 1..171</a> (first 18 rows) %H A379624 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %e A379624 Triangle begins: %e A379624 1; %e A379624 0, 1; %e A379624 0, 1, 1; %e A379624 0, 1, 3, 1; %e A379624 0, 0, 8, 3, 1; %e A379624 0, 0, 8, 21, 5, 1; %e A379624 0, 0, 7, 59, 36, 5, 1; %e A379624 0, 0, 3, 137, 167, 54, 7, 1; %e A379624 0, 0, 1, 223, 669, 307, 77, 7, 1; %e A379624 0, 0, 0, 287, 2089, 1627, 539, 103, 9, 1; %e A379624 0, 0, 0, 255, 5472, 7126, 3237, 839, 134, 9, 1; %e A379624 0, 0, 0, 169, 11919, 27504, 16706, 5851, 1271, 168, 11, 1; %e A379624 ... %e A379624 Illustration for n = 5: %e A379624 The free polyominoes with five cells are also called free pentominoes. %e A379624 For k = 1 there are no free pentominoes of length 1, so T(5,1) = 0. %e A379624 For k = 2 there are no free pentominoes of length 2, so T(5,2) = 0. %e A379624 For k = 3 there are eight free pentominoes of length 3 as shown below, so T(5,3) = 8. %e A379624 _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A379624 |_|_| |_|_| _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| %e A379624 |_|_| |_|_ |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ %e A379624 |_| |_|_| |_| |_| |_|_|_| |_|_| |_| |_|_| %e A379624 . %e A379624 For k = 4 there are three free pentominoes of length 4 as shown below, so T(5,4) = 3. %e A379624 _ _ _ %e A379624 |_| _|_| _|_| %e A379624 |_| |_|_| |_|_| %e A379624 |_|_ |_| |_| %e A379624 |_|_| |_| |_| %e A379624 . %e A379624 For k = 5 there is only one free pentomino of length 5 as shown below, so T(5,5) = 1. %e A379624 _ %e A379624 |_| %e A379624 |_| %e A379624 |_| %e A379624 |_| %e A379624 |_| %e A379624 . %e A379624 Therefore the 5th row of the triangle is [0, 0, 8, 3, 1] and the row sum is A000105(5) = 12. %e A379624 . %Y A379624 Row sums give A000105(n). %Y A379624 Column 1 gives A000007. %Y A379624 Leading diagonal gives A000012. %Y A379624 For free polyominoes of width k see A379623. %Y A379624 Cf. A109613, A379627, A379628. %K A379624 nonn,tabl %O A379624 1,9 %A A379624 _Omar E. Pol_, Jan 07 2025 %E A379624 Terms a(37) and beyond from _Jinyuan Wang_, Jan 08 2025