cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379628 Total area between the free polyominoes with n cells and their bounding boxes.

This page as a plain text file.
%I A379628 #43 Feb 16 2025 13:55:05
%S A379628 0,0,1,6,35,143,631,2747,12027,52470,227993,985522,4235295,18114067,
%T A379628 77112058,327000797,1381807943,5821692946
%N A379628 Total area between the free polyominoes with n cells and their bounding boxes.
%C A379628 a(n) includes the area of any holes in the polyominoes.
%H A379628 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A379628 a(n) = A379627(n) - A057766(n).
%e A379628 Illustration for n = 4:
%e A379628 The free polyominoes with four cells are also called free tetrominoes.
%e A379628 The five free tetrominoes are as shown below:
%e A379628     _
%e A379628    |_|     _       _       _
%e A379628    |_|    |_|     |_|_    |_|_     _ _
%e A379628    |_|    |_|_    |_|_|   |_|_|   |_|_|
%e A379628    |_|    |_|_|     |_|   |_|     |_|_|
%e A379628 .
%e A379628 The bounding boxes are respectively as shown below:
%e A379628     _
%e A379628    | |     _ _     _ _     _ _
%e A379628    | |    |   |   |   |   |   |    _ _
%e A379628    | |    |   |   |   |   |   |   |   |
%e A379628    |_|    |_ _|   |_ _|   |_ _|   |_ _|
%e A379628 .
%e A379628   4 x 1   3 X 2   3 X 2   3 X 2   2 X 2
%e A379628 .
%e A379628 The total area of the free tetrominoes is 5*4 = 20.
%e A379628 The total area of the bounding boxes is 4 + 6 + 6 + 6 + 4 = 26.
%e A379628 The total area between the bounding boxes and the free tetrominoes is 26 - 20 = 6, so a(4) = 6.
%e A379628 .
%Y A379628 Cf. A000105, A057766, A379623, A379624, A379627.
%K A379628 nonn,more
%O A379628 1,4
%A A379628 _Omar E. Pol_, Jan 07 2025
%E A379628 a(7)-a(16) from _Pontus von Brömssen_, Jan 11 2025
%E A379628 a(17)-a(18) from _John Mason_, Feb 16 2025