cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379630 Irregular triangle read by rows in which row n lists the smallest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem of correspondence described in the Comments lines.

This page as a plain text file.
%I A379630 #76 Dec 30 2024 17:02:30
%S A379630 1,1,2,1,3,1,3,1,4,1,5,2,5,1,6,1,3,1,7,3,7,1,8,1,9,4,2,3,9,1,10,1,5,1,
%T A379630 11,5,11,1,12,3,3,1,13,6,13,1,14,2,7,1,15,7,4,1,5,3,15,1,16,1,17,8,17,
%U A379630 1,18,5,3,9,3,1,19,9,19,1,20,2,5,1,21,10,6,1,7,3,21,1,22,4,11,1,23,11,23,1,24,7,3,1
%N A379630 Irregular triangle read by rows in which row n lists the smallest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem of correspondence described in the Comments lines.
%C A379630 Theorem of correspondence between the partitions of n into k consecutive parts and the odd divisors of n: given a partition of n into k consecutive parts if k is odd then the corresponding odd divisor of n is k, otherwise if k is even then the corresponding odd divisor of n is the sum of any pair of conjugate parts of the partition (for example the sum of the largest part and the smallest part).
%C A379630 Conjecture: the first A001227(n) terms in the n-th row are also the absolute values of the n-th row of A341971.
%C A379630 The last A001227(n) terms in the n-th row are also the mirror of the n-th row of A261697.
%e A379630 Triangle begins:
%e A379630    1,  1;
%e A379630    2,  1;
%e A379630    3,  1,  3,  1;
%e A379630    4,  1;
%e A379630    5,  2,  5,  1;
%e A379630    6,  1,  3,  1;
%e A379630    7,  3,  7,  1;
%e A379630    8,  1;
%e A379630    9,  4,  2,  3,  9,  1;
%e A379630   10,  1,  5,  1;
%e A379630   11,  5, 11,  1;
%e A379630   12,  3,  3,  1;
%e A379630   13,  6, 13,  1;
%e A379630   14,  2,  7,  1;
%e A379630   15,  7,  4,  1,  5,  3, 15,  1;
%e A379630   16,  1;
%e A379630   17,  8, 17,  1;
%e A379630   18,  5,  3,  9,  3,  1;
%e A379630   19,  9, 19,  1;
%e A379630   20,  2,  5,  1;
%e A379630   21, 10,  6,  1,  7,  3, 21,  1;
%e A379630   ...
%e A379630 For n = 21 the partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1].
%e A379630 On the other hand the odd divisors of 21 are [1, 3, 7, 21].
%e A379630 To determine how these partitions are related to the odd divisors we follow the two rules of the theorem as shown below:
%e A379630 The first partition is [21] and the number of parts is 1 and 1 is odd so the corresponding odd divisor of 21 is 1.
%e A379630 The second partition is [11, 10] and the number of parts is 2 and 2 even so the corresponding odd divisor of 21 is equal to 11 + 10 = 21.
%e A379630 The third partition is [8, 7, 6] and the number of parts is 3 and 3 is odd so the corresponding odd divisor of 21 is 3.
%e A379630 The fourth partition is [6, 5, 4, 3, 2, 1] and the number of parts is 6 and 6 is even so the corresponding odd divisor of 21 is equal to 6 + 1 = 5 + 2 = 4 + 3 = 7.
%e A379630 Summarizing in a table:
%e A379630   --------------------------------------
%e A379630               Correspondence
%e A379630   --------------------------------------
%e A379630     Partitions of 21              Odd
%e A379630     into consecutive           divisors
%e A379630          parts                   of 21
%e A379630   -------------------         ----------
%e A379630    [21]   ....................     1
%e A379630    [11, 10]   ................    21
%e A379630    [8, 7, 6]  ................     3
%e A379630    [6, 5, 4, 3, 2, 1]  .......     7
%e A379630 .
%e A379630 Then we can make a table of conjugate correspondence in which the four partitions are arrenged in four columns with the smallest parts at the top as shown below:
%e A379630   ------------------------------------------
%e A379630            Conjugate correspondence
%e A379630   ------------------------------------------
%e A379630     Partitions of 21              Odd
%e A379630     into consecutive           divisors
%e A379630     parts as columns             of 21
%e A379630   -------------------     ------------------
%e A379630    21   10    6    1       7    3   21    1
%e A379630     |   11    7    2       |    |    |    |
%e A379630     |    |    8    3       |    |    |    |
%e A379630     |    |    |    4       |    |    |    |
%e A379630     |    |    |    5       |    |    |    |
%e A379630     |    |    |    6       |    |    |    |
%e A379630     |    |    |    |_______|    |    |    |
%e A379630     |    |    |_________________|    |    |
%e A379630     |    |___________________________|    |
%e A379630     |_____________________________________|
%e A379630 .
%e A379630 Then removing all rows except the first row we have a table of conjugate correspondence for smallest parts and odd divisors as shown below:
%e A379630   -------------------     ------------------
%e A379630     Smallest parts           Odd divisors
%e A379630   -------------------     ------------------
%e A379630    21   10    6    1       7    3   21    1
%e A379630     |    |    |    |_______|    |    |    |
%e A379630     |    |    |_________________|    |    |
%e A379630     |    |___________________________|    |
%e A379630     |_____________________________________|
%e A379630 .
%e A379630 So the 21st row of the triangle is [21, 10, 6, 1, 7, 3, 21, 1].
%e A379630 .
%e A379630 Illustration of initial terms in an isosceles triangle demonstrating the theorem:
%e A379630 .                                          _ _
%e A379630                                          _|1|1|_
%e A379630                                        _|2 _|_ 1|_
%e A379630                                      _|3  |1|3|  1|_
%e A379630                                    _|4   _| | |_   1|_
%e A379630                                  _|5    |2 _|_ 5|    1|_
%e A379630                                _|6     _| |1|3| |_     1|_
%e A379630                              _|7      |3  | | |  7|      1|_
%e A379630                            _|8       _|  _| | |_  |_       1|_
%e A379630                          _|9        |4  |2 _|_ 3|  9|        1|_
%e A379630                        _|10        _|   | |1|5| |   |_         1|_
%e A379630                      _|11         |5   _| | | | |_  11|          1|_
%e A379630                    _|12          _|   |3  | | |  3|   |_           1|_
%e A379630                  _|13           |6    |  _| | |_  |   13|            1|_
%e A379630                _|14            _|    _| |2 _|_ 7| |_    |_             1|_
%e A379630              _|15             |7    |4  | |1|5| |  3|   15|              1|_
%e A379630            _|16              _|     |   | | | | |   |     |_               1|_
%e A379630          _|17               |8     _|  _| | | | |_  |_    17|                1|_
%e A379630        _|18                _|     |5  |3  | | |  9|  3|     |_                 1|_
%e A379630      _|19                 |9      |   |  _| | |_  |   |     19|                  1|_
%e A379630    _|20                  _|      _|   | |2 _|_ 5| |   |_      |_                   1|_
%e A379630   |21                   |10     |6    | | |1|7| | |    3|     21|                    1|
%e A379630 .
%e A379630 The geometrical structure of the above isosceles triangle is defined in A237593. See also the triangle A286001.
%e A379630 Note that the diagram also can be interpreted as a template which after folding gives a 90 degree pop-up card which has essentially the same structure as the stepped pyramid described in A245092.
%e A379630 .
%Y A379630 Column 1 gives A000027.
%Y A379630 Right border gives A000012.
%Y A379630 The sum of row n equals A286014(n) + A000593(n).
%Y A379630 The length of row n is A054844(n) = 2*A001227(n).
%Y A379630 The partitions of n into consecutive parts are in the n-th row of A299765. See also A286000 and A286001.
%Y A379630 The odd divisors of n are in the n-th row of A182469. See also A261697 and A261699.
%Y A379630 Cf. A196020, A204217, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A245092, A262626, A341971.
%K A379630 nonn,tabf
%O A379630 1,3
%A A379630 _Omar E. Pol_, Dec 28 2024