cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379631 Irregular triangle read by rows: T(n,m), n >= 1, m >= 1, in which row n lists the largest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem described in A379630.

This page as a plain text file.
%I A379631 #33 Jan 07 2025 10:51:53
%S A379631 1,1,2,1,3,2,3,1,4,1,5,3,5,1,6,3,3,1,7,4,7,1,8,1,9,5,4,3,9,1,10,4,5,1,
%T A379631 11,6,11,1,12,5,3,1,13,7,13,1,14,5,7,1,15,8,6,5,5,3,15,1,16,1,17,9,17,
%U A379631 1,18,7,6,9,3,1,19,10,19,1,20,6,5,1,21,11,8,6,7,3,21,1,22,7,11,1,23,12,23,1,24,9,3,1
%N A379631 Irregular triangle read by rows: T(n,m), n >= 1, m >= 1, in which row n lists the largest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem described in A379630.
%C A379631 Consider that the mentioned partitions are ordered by increasing number of parts.
%C A379631 Row n gives the n-th row of A379633 together with the n-th row of A379634.
%e A379631 Triangle begins:
%e A379631    1,  1;
%e A379631    2,  1;
%e A379631    3,  2,  3,  1;
%e A379631    4,  1;
%e A379631    5,  3,  5,  1;
%e A379631    6,  3,  3,  1;
%e A379631    7,  4,  7,  1;
%e A379631    8,  1;
%e A379631    9,  5,  4,  3,  9,  1,
%e A379631   10,  4,  5,  1;
%e A379631   11,  6, 11,  1;
%e A379631   12,  5,  3,  1;
%e A379631   13,  7, 13,  1;
%e A379631   14,  5,  7,  1;
%e A379631   15,  8,  6,  5,  5,  3, 15,  1;
%e A379631   16,  1;
%e A379631   17,  9, 17,  1;
%e A379631   18,  7,  6,  9,  3,  1;
%e A379631   19, 10, 19,  1;
%e A379631   20,  6,  5,  1;
%e A379631   21, 11,  8,  6,  7,  3, 21,  1;
%e A379631   ...
%e A379631 For n = 21 the partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1].
%e A379631 On the other hand the odd divisors of 21 are [1, 3, 7, 21].
%e A379631 To determine how these partitions are related to the odd divisors we follow the two rules of the theorem described in A379630 as shown below:
%e A379631 The first partition is [21] and the number of parts is 1 and 1 is odd so the corresponding odd divisor of 21 is 1.
%e A379631 The second partition is [11, 10] and the number of parts is 2 and 2 is even so the corresponding odd divisor of 21 is equal to 11 + 10 = 21.
%e A379631 The third partition is [8, 7, 6] and the number of parts is 3 and 3 is odd so the corresponding odd divisor of 21 is 3.
%e A379631 The fourth partition is [6, 5, 4, 3, 2, 1] and the number of parts is 6 and 6 is even so the corresponding odd divisor of 21 is equal to 6 + 1 = 5 + 2 = 4 + 3 = 7.
%e A379631 Summarizing in a table:
%e A379631   --------------------------------------
%e A379631               Correspondence
%e A379631   --------------------------------------
%e A379631     Partitions of 21              Odd
%e A379631     into consecutive           divisors
%e A379631          parts                   of 21
%e A379631   -------------------         ----------
%e A379631    [21]   ....................     1
%e A379631    [11, 10]   ................    21
%e A379631    [8, 7, 6]  ................     3
%e A379631    [6, 5, 4, 3, 2, 1]  .......     7
%e A379631 .
%e A379631 Then we can make a table of conjugate correspondence in which the four partitions are arrenged in four columns with the largest parts at the top as shown below:
%e A379631   ------------------------------------------
%e A379631            Conjugate correspondence
%e A379631   ------------------------------------------
%e A379631     Partitions of 21              Odd
%e A379631     into consecutive           divisors
%e A379631     parts as columns             of 21
%e A379631   -------------------     ------------------
%e A379631    21   11    8    6       7    3   21    1
%e A379631     |   10    7    5       |    |    |    |
%e A379631     |    |    6    4       |    |    |    |
%e A379631     |    |    |    3       |    |    |    |
%e A379631     |    |    |    2       |    |    |    |
%e A379631     |    |    |    1       |    |    |    |
%e A379631     |    |    |    |_______|    |    |    |
%e A379631     |    |    |_________________|    |    |
%e A379631     |    |___________________________|    |
%e A379631     |_____________________________________|
%e A379631 .
%e A379631 Then removing all rows except the first row we have a table of conjugate correspondence for largest parts and odd divisors as shown below:
%e A379631   -------------------     ------------------
%e A379631      Largest parts           Odd divisors
%e A379631   -------------------     ------------------
%e A379631    21   11    8    6       7    3   21    1
%e A379631     |    |    |    |_______|    |    |    |
%e A379631     |    |    |_________________|    |    |
%e A379631     |    |___________________________|    |
%e A379631     |_____________________________________|
%e A379631 .
%e A379631 So the 21st row of the triangle is [21, 11, 8, 6, 7, 3, 21, 1].
%e A379631 .
%e A379631 Illustration of initial terms in an isosceles triangle demonstrating the theorem described in A379630:
%e A379631 .                                          _ _
%e A379631                                          _|1|1|_
%e A379631                                        _|2 _|_ 1|_
%e A379631                                      _|3  |2|3|  1|_
%e A379631                                    _|4   _| | |_   1|_
%e A379631                                  _|5    |3 _|_ 5|    1|_
%e A379631                                _|6     _| |3|3| |_     1|_
%e A379631                              _|7      |4  | | |  7|      1|_
%e A379631                            _|8       _|  _| | |_  |_       1|_
%e A379631                          _|9        |5  |4 _|_ 3|  9|        1|_
%e A379631                        _|10        _|   | |4|5| |   |_         1|_
%e A379631                      _|11         |6   _| | | | |_  11|          1|_
%e A379631                    _|12          _|   |5  | | |  3|   |_           1|_
%e A379631                  _|13           |7    |  _| | |_  |   13|            1|_
%e A379631                _|14            _|    _| |5 _|_ 7| |_    |_             1|_
%e A379631              _|15             |8    |6  | |5|5| |  3|   15|              1|_
%e A379631            _|16              _|     |   | | | | |   |     |_               1|_
%e A379631          _|17               |9     _|  _| | | | |_  |_    17|                1|_
%e A379631        _|18                _|     |7  |6  | | |  9|  3|     |_                 1|_
%e A379631      _|19                 |10     |   |  _| | |_  |   |     19|                  1|_
%e A379631    _|20                  _|      _|   | |6 _|_ 5| |   |_      |_                   1|_
%e A379631   |21                   |11     |8    | | |6|7| | |    3|     21|                    1|
%e A379631 .
%e A379631 The geometrical structure of the above isosceles triangle is defined in A237593. See also the triangles A286000 and A379633.
%e A379631 Note that the diagram also can be interpreted as a template which after folding gives a 90 degree pop-up card which has essentially the same structure as the stepped pyramid described in A245092.
%e A379631 .
%Y A379631 Column 1 gives A000027.
%Y A379631 Right border gives A000012.
%Y A379631 The sum of row n equals A286015(n) + A000593(n).
%Y A379631 The length of row n is A054844(n) = 2*A001227(n).
%Y A379631 For another version with smallest parts see A379630.
%Y A379631 The partitions of n into consecutive parts are in the n-th row of A299765. See also A286000.
%Y A379631 The odd divisors of n are in the n-th row of A182469. See also A261697 and A261699.
%Y A379631 Cf. A196020, A204217, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A245092, A262626, A379632, A379633, A379634.
%K A379631 nonn,tabf
%O A379631 1,3
%A A379631 _Omar E. Pol_, Dec 30 2024