cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379635 Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.

This page as a plain text file.
%I A379635 #21 Jan 15 2025 22:44:30
%S A379635 1,3,3,4,9,4,7,12,12,7,6,21,16,21,6,12,18,28,28,18,12,8,36,24,49,24,
%T A379635 36,8,15,24,48,42,42,48,24,15,13,45,32,84,36,84,32,45,13,18,39,60,56,
%U A379635 72,72,56,60,39,18,12,54,52,105,48,144,48,105,52,54,12,28,36,72,91,90,96,96,90,91,72,36,28
%N A379635 Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.
%H A379635 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%e A379635 Triangle begins:
%e A379635    1;
%e A379635    3,   3;
%e A379635    4,   9,   4;
%e A379635    7,  12,  12,   7;
%e A379635    6,  21,  16,  21,   6;
%e A379635   12,  18,  28,  28,  18,  12;
%e A379635    8,  36,  24,  49,  24,  36,   8;
%e A379635   15,  24,  48,  42,  42,  48,  24,  15;
%e A379635   13,  45,  32,  84,  36,  84,  32,  45,  13;
%e A379635   18,  39,  60,  56,  72,  72,  56,  60,  39,  18;
%e A379635   12,  54,  52, 105,  48, 144,  48, 105,  52,  54,  12;
%e A379635   28,  36,  72,  91,  90,  96,  96,  90,  91,  72,  36,  28;
%e A379635   14,  84,  48, 126,  78, 180,  64, 180,  78, 126,  48,  84,  14;
%e A379635   ...
%e A379635 For n = 10 the calculation of the row 10 is as follows:
%e A379635     k    A000203         T(10,k)
%e A379635     1       1   *  18   =   18
%e A379635     2       3   *  13   =   39
%e A379635     3       4   *  15   =   60
%e A379635     4       7   *   8   =   56
%e A379635     5       6   *  12   =   72
%e A379635     6      12   *   6   =   72
%e A379635     7       8   *   7   =   56
%e A379635     8      15   *   4   =   60
%e A379635     9      13   *   3   =   39
%e A379635    10      18   *   1   =   18
%e A379635                  A000203
%e A379635 .
%t A379635 T[n_,k_]:=DivisorSigma[1,k]*DivisorSigma[1,n-k+1];Table[T[n,k],{n,12},{k,n }]//Flatten (* _James C. McMahon_, Jan 15 2025 *)
%o A379635 (PARI) T(n, k)=sigma(k)*sigma(n-k+1)
%Y A379635 Column 1 and leading diagonal give A000203.
%Y A379635 Middle diagonal gives A072861.
%Y A379635 Row sums give A000385.
%Y A379635 Cf. A221529.
%K A379635 nonn,tabl
%O A379635 1,2
%A A379635 _Omar E. Pol_, Jan 14 2025