This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379637 #15 Jan 16 2025 21:24:59 %S A379637 1,1,1,2,1,8,1,10,18,1,24,66,1,36,213,72,1,74,579,552,1,120,1470,2644, %T A379637 365,1,234,3663,10188,3845,1,400,9033,33668,25945,1530,1,758,22179, %U A379637 104656,129600,22458,1,1338,54075,312296,544170,192228,6650,1,2500,131541,919524,2041085,1211736,117733 %N A379637 Irregular triangle read by rows: T(n,k) is the sum of the widths of the free polyominoes with n cells and width k, n >= 1, 1 <= k <= ceiling(n/2). %C A379637 The width here is the shorter of the two dimensions. %H A379637 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A379637 T(n,k) = k*A379623(n,k). %e A379637 Triangle begins: %e A379637 1; %e A379637 1; %e A379637 1, 2; %e A379637 1, 8; %e A379637 1, 10, 18; %e A379637 1, 24, 66; %e A379637 1, 36, 213, 72; %e A379637 1, 74, 579, 552; %e A379637 1, 120, 1470, 2644, 365; %e A379637 1, 234, 3663, 10188, 3845; %e A379637 1, 400, 9033, 33668, 25945, 1530; %e A379637 1, 758, 22179, 104656, 129600, 22458; %e A379637 1, 1338, 54075, 312296, 544170, 192228, 6650; %e A379637 1, 2500, 131541, 919524, 2041085, 1211736, 117733; %e A379637 ... %e A379637 Illustration for n = 5: %e A379637 The free polyominoes with five cells are also called free pentominoes. %e A379637 For k = 1 there is only one free pentomino of width 1 as shown below, so T(5,1) = 1. %e A379637 _ %e A379637 |_| %e A379637 |_| %e A379637 |_| %e A379637 |_| %e A379637 |_| %e A379637 . %e A379637 For k = 2 there are five free pentominoes of width 2 as shown below, hence the sum of the widths is 2 + 2 + 2 + 2 + 2 = 5*2 = 10, so T(5,2) = 10. %e A379637 _ _ _ %e A379637 |_| _|_| _|_| _ _ _ _ %e A379637 |_| |_|_| |_|_| |_|_| |_|_| %e A379637 |_|_ |_| |_| |_|_| |_|_ %e A379637 |_|_| |_| |_| |_| |_|_| %e A379637 . %e A379637 For k = 3 there are six free pentominoes of width 3 as shown below, hence the sum of the widths is 3 + 3 + 3 + 3 + 3 + 3 = 6*3 = 18, so T(5,3) = 18. %e A379637 _ _ _ _ _ _ _ _ _ _ %e A379637 _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| %e A379637 |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ %e A379637 |_| |_| |_|_|_| |_|_| |_| |_|_| %e A379637 . %e A379637 Therefore the 5th row of the triangle is [1, 10, 18]. %e A379637 . %Y A379637 Row lengths give A110654. %Y A379637 Row sums give A379626. %Y A379637 Cf. A000105, A379623, A379625, A379627, A379638. %K A379637 nonn,tabf %O A379637 1,4 %A A379637 _Omar E. Pol_, Jan 16 2025