This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379638 #17 Jan 16 2025 21:25:07 %S A379638 1,0,2,0,2,3,0,2,9,4,0,0,24,12,5,0,0,24,84,25,6,0,0,21,236,180,30,7,0, %T A379638 0,9,548,835,324,49,8,0,0,3,892,3345,1842,539,56,9,0,0,0,1148,10445, %U A379638 9762,3773,824,81,10,0,0,0,1020,27360,42756,22659,6712,1206,90,11,0,0,0,676,59595,165024,116942,46808,11439,1680,121,12 %N A379638 Triangle read by rows: T(n,k) is the sum of the lengths of the free polyominoes with n cells and length k, n >= 1, k >= 1. %C A379638 The length here is the longer of the two dimensions. %H A379638 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A379638 T(n,k) = k*A379624(n,k). %e A379638 Triangle begins: %e A379638 1; %e A379638 0, 2; %e A379638 0, 2, 3; %e A379638 0, 2, 9, 4; %e A379638 0, 0, 24, 12, 5; %e A379638 0, 0, 24, 84, 25, 6; %e A379638 0, 0, 21, 236, 180, 30, 7; %e A379638 0, 0, 9, 548, 835, 324, 49, 8; %e A379638 0, 0, 3, 892, 3345, 1842, 539, 56, 9; %e A379638 0, 0, 0, 1148, 10445, 9762, 3773, 824, 81, 10; %e A379638 0, 0, 0, 1020, 27360, 42756, 22659, 6712, 1206, 90, 11; %e A379638 0, 0, 0, 676, 59595, 165024, 116942, 46808, 11439, 1680, 121, 12; %e A379638 ... %e A379638 Illustration for n = 5: %e A379638 The free polyominoes with five cells are also called free pentominoes. %e A379638 For k = 1 there are no free pentominoes of length 1, so T(5,1) = 0. %e A379638 For k = 2 there are no free pentominoes of length 2, so T(5,2) = 0. %e A379638 For k = 3 there are eight free pentominoes of length 3 as shown below, hence the sum of the lengths is 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 8*3 = 24, so (5,3) = 24. %e A379638 _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A379638 |_|_| |_|_| _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| %e A379638 |_|_| |_|_ |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ %e A379638 |_| |_|_| |_| |_| |_|_|_| |_|_| |_| |_|_| %e A379638 . %e A379638 For k = 4 there are three free pentominoes of length 4 as shown below, hence the sum of the lengths is 4 + 4 + 4 = 3*4 = 12, so T(5,4) = 12. %e A379638 _ _ _ %e A379638 |_| _|_| _|_| %e A379638 |_| |_|_| |_|_| %e A379638 |_|_ |_| |_| %e A379638 |_|_| |_| |_| %e A379638 . %e A379638 For k = 5 there is only one free pentomino of length 5 as shown below, so T(5,5) = 5. %e A379638 _ %e A379638 |_| %e A379638 |_| %e A379638 |_| %e A379638 |_| %e A379638 |_| %e A379638 . %e A379638 Therefore the 5th row of the triangle is [0, 0, 24, 12, 5]. %Y A379638 Row sums give A379629. %Y A379638 Cf. A000105, A379624, A379625, A379627, A379637. %K A379638 nonn,tabl %O A379638 1,3 %A A379638 _Omar E. Pol_, Jan 16 2025