This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379646 #8 Jan 03 2025 02:20:59 %S A379646 1,2,3,8,12,24,3,8,12,24,4,6,24,5,20,60,120,6,24,7,16,24,8,12,24,9,24, %T A379646 10,60,120,11,10,60,120,12,24,13,28,48,24,14,48,24,15,40,60,120,16,24, %U A379646 17,36,24,18,24,19,18,24,20,60,120,21,16,24,22,30,120,23,48,24 %N A379646 Irregular triangle T(n,k) where row n contains the trajectory of recursive mappings of A001175(x) starting with x = n and ending at fixed point A235249(n). %C A379646 Row n contains recursive mappings of A001175(x) starting with x = n. %H A379646 Michael De Vlieger, <a href="/A379646/b379646.txt">Table of n, a(n) for n = 1..10141</a> (rows n = 1..2500, flattened) %H A379646 Brennan Benfield and Oliver Lippard, <a href="https://arxiv.org/abs/2404.08194">Fixed points of K-Fibonacci sequences</a>, arXiv:2404.08194 [math.NT], 2024. %H A379646 J. D. Fulton and W. L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica, 16 (1969), 105-110. %H A379646 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pisano_period">Pisano period</a> %e A379646 Table begins: %e A379646 1; %e A379646 2, 3, 8, 12, 24; %e A379646 3, 8, 12, 24; %e A379646 4, 6, 24; %e A379646 5, 20, 60, 120; %e A379646 6, 24; %e A379646 7, 16, 24; %e A379646 8, 12, 24; %e A379646 9, 24; %e A379646 10, 60, 120; %e A379646 11, 10, 60, 120; %e A379646 12, 24; %e A379646 ... %t A379646 q[{0, 1, _}] := False; q[_] := True; %t A379646 f[k_][{a_, b_, c_}] := {Mod[b, k], Mod[a + b, k], c + 1}; %t A379646 s[1] := 1; s[k_] := s[k] = Which[ %t A379646 PrimeQ[k] && k > 5, If[ %t A379646 AnyTrue[PrimitiveRootList[k], Mod[#^2, k] == Mod[# + 1, k] &], %t A379646 k - 1, %t A379646 NestWhile[f[k], {1, 1, 1}, q][[-1]] ], %t A379646 PrimePowerQ[k], NestWhile[f[k], {1, 1, 1}, q][[-1]], True, %t A379646 LCM @@ Map[s[#] &, Power @@@ FactorInteger[k] ] ]; %t A379646 Table[Most@ FixedPointList[s[#] &, n], {n, 24}] %Y A379646 Cf. A001175, A001179, A235249, A235702. %K A379646 nonn,tabf %O A379646 1,2 %A A379646 _Michael De Vlieger_, Dec 30 2024