A379654 Least positive integer k <= n such that |tau(k)|*n + 1 is prime, or 0 if such k does not exist, where the tau function is given by A000594.
1, 1, 2, 1, 5, 1, 5, 2, 3, 1, 4, 1, 2, 2, 11, 1, 2, 1, 2, 5, 13, 1, 4, 2, 2, 3, 5, 1, 3, 1, 5, 2, 3, 6, 3, 1, 21, 15, 2, 1, 3, 1, 2, 11, 5, 1, 2, 2, 6, 2, 3, 1, 4, 2, 2, 11, 7, 1, 3, 1, 3, 2, 3, 5, 3, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 6, 10, 1, 15, 3, 4, 1, 2, 2, 5, 3, 2, 1, 2, 2, 6, 12, 4, 3, 2, 1, 7, 3, 2, 1
Offset: 1
Keywords
Examples
a(1) = 1 since 1*|tau(1)| + 1 = 2 is a prime. a(5) = 5 since 5*|tau(5)| + 1 = 5*4830 + 1 = 24151 is prime, and 5*|tau(k)| + 1 is composite for every k = 1, 2, 3, 4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t[n_]:=t[n]=Abs[RamanujanTau[n]]; L={};Do[Do[If[PrimeQ[t[k]n+1],L=Append[L,k];Goto[aa]],{k,1,n}];L=Append[L,0];Label[aa],{n,1,100}];Print[L]
Comments