A379656 Carmichael numbers that are the sum of 2 positive cubes.
1729, 15841, 46657, 126217, 188461, 1082809, 1773289, 2628073, 3146221, 5049001, 6868261, 14469841, 19683001, 31146661, 40917241, 78091201, 92625121, 144218341, 252141121, 1836304561, 2616662881, 3035837161, 4354716961, 4828075561, 10779325921, 13200275881, 14235803713
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..831 (terms below 10^22)
- Jeffrey C. Lagarias, Problem 12048, Problems and Solutions, The American Mathematical Monthly, Vol. 125, No. 6 (2018), p. 562; JSTOR link; Carmichael in a Taxicab, Solution to Problem 12048 by Albert Stadler, ibid., Vol. 127, No. 1 (2020), p. 93; JSTOR link.
- Samuel S. Wagstaff, Ramanujan's taxicab number and its ilk, The Ramanujan Journal, Vol. 64, No. 3 (2024), pp. 761-764; ResearchGate link, author's copy.
Crossrefs
Programs
-
Mathematica
carmQ[n_] := CompositeQ[n] && Divisible[n-1, CarmichaelLambda[n]]; Select[Range[200000], carmQ[#] && Length[PowersRepresentations[#, 2, 3]] > 0 &]
-
PARI
isA003325(n) = #select(v->min(v[1], v[2])>0, thue(thueinit('z^3+1);, n)) > 0; \\ Charles R Greathouse IV at A003325 is(n) = (n > 1) && !isprime(n) && !((n-1) % lcm(znstar(n)[2])) && isA003325(n);
Comments