cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.

This page as a plain text file.
%I A379666 #7 Jan 02 2025 21:27:58
%S A379666 1,0,1,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,2,1,
%T A379666 1,1,0,0,0,0,0,2,1,1,1,0,0,0,0,0,1,2,1,1,1,0,0,0,0,0,1,1,2,1,1,1,0,0,
%U A379666 0,0,0,0,2,1,2,1,1,1
%N A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.
%C A379666 Counts finite multisets of positive integers by sum and product.
%e A379666 Array begins:
%e A379666         k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
%e A379666         -----------------------------------------------
%e A379666    n=0:  1   0   0   0   0   0   0   0   0   0   0   0
%e A379666    n=1:  1   0   0   0   0   0   0   0   0   0   0   0
%e A379666    n=2:  1   1   0   0   0   0   0   0   0   0   0   0
%e A379666    n=3:  1   1   1   0   0   0   0   0   0   0   0   0
%e A379666    n=4:  1   1   1   2   0   0   0   0   0   0   0   0
%e A379666    n=5:  1   1   1   2   1   1   0   0   0   0   0   0
%e A379666    n=6:  1   1   1   2   1   2   0   2   1   0   0   0
%e A379666    n=7:  1   1   1   2   1   2   1   2   1   1   0   2
%e A379666    n=8:  1   1   1   2   1   2   1   3   1   1   0   3
%e A379666    n=9:  1   1   1   2   1   2   1   3   2   1   0   3
%e A379666   n=10:  1   1   1   2   1   2   1   3   2   2   0   3
%e A379666   n=11:  1   1   1   2   1   2   1   3   2   2   1   3
%e A379666   n=12:  1   1   1   2   1   2   1   3   2   2   1   4
%e A379666 For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1).
%e A379666 Antidiagonals begin:
%e A379666    n+k=1: 1
%e A379666    n+k=2: 0 1
%e A379666    n+k=3: 0 0 1
%e A379666    n+k=4: 0 0 1 1
%e A379666    n+k=5: 0 0 0 1 1
%e A379666    n+k=6: 0 0 0 1 1 1
%e A379666    n+k=7: 0 0 0 0 1 1 1
%e A379666    n+k=8: 0 0 0 0 2 1 1 1
%e A379666    n+k=9: 0 0 0 0 0 2 1 1 1
%e A379666   n+k=10: 0 0 0 0 0 1 2 1 1 1
%e A379666   n+k=11: 0 0 0 0 0 1 1 2 1 1 1
%e A379666   n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1
%e A379666   n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1
%e A379666   n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1
%e A379666   n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1
%e A379666   n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1
%e A379666 For example, antidiagonal n+k=10 counts the following partitions:
%e A379666   n=5: (5)
%e A379666   n=6: (411), (2211)
%e A379666   n=7: (31111)
%e A379666   n=8: (2111111)
%e A379666   n=9: (111111111)
%e A379666 so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
%t A379666 nn=12;
%t A379666 tt=Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
%t A379666 tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
%t A379666 Join@@tr (* sequence *)
%Y A379666 Row sums are A000041 = partitions of n, strict A000009, no ones A002865.
%Y A379666 Diagonal A(n,n) is A001055(n) = factorizations of n, strict A045778.
%Y A379666 Antidiagonal sums are A379667.
%Y A379666 The case without ones is A379668, antidiagonal sums A379669 (zeros A379670).
%Y A379666 The strict case is A379671, antidiagonal sums A379672.
%Y A379666 The strict case without ones is A379678, antidiagonal sums A379679 (zeros A379680).
%Y A379666 A316439 counts factorizations by length, partitions A008284.
%Y A379666 A326622 counts factorizations with integer mean, strict A328966.
%Y A379666 Counting and ranking multisets by comparing sum and product:
%Y A379666 - same: A001055, ranks A301987
%Y A379666 - divisible: A057567, ranks A326155
%Y A379666 - divisor: A057568, ranks A326149, see A379733
%Y A379666 - greater than: A096276 shifted right, ranks A325038
%Y A379666 - greater or equal: A096276, ranks A325044
%Y A379666 - less than: A114324, ranks A325037, see A318029
%Y A379666 - less or equal: A319005, ranks A379721, see A025147
%Y A379666 - different: A379736, ranks A379722, see A111133
%Y A379666 Cf. A003963, A028422, A069016, A096765, A318950, A319000, A319916, A319057, A325036, A325041, A325042, A326152.
%K A379666 nonn,tabl
%O A379666 1,33
%A A379666 _Gus Wiseman_, Jan 01 2025