This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379668 #17 Jan 02 2025 10:49:57 %S A379668 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0, %T A379668 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, %U A379668 0,0,0,0,1,0,0,0,0,0 %N A379668 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n into parts > 1 with product k. %C A379668 This table counts finite multisets of positive integers > 1 by sum and product. Compare to the triangle A318950. %F A379668 For n <= k we have A(n,k) = A318950(k,n). %e A379668 Array begins: %e A379668 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12 %e A379668 ----------------------------------------------- %e A379668 n=0: 1 0 0 0 0 0 0 0 0 0 0 0 %e A379668 n=1: 0 0 0 0 0 0 0 0 0 0 0 0 %e A379668 n=2: 0 1 0 0 0 0 0 0 0 0 0 0 %e A379668 n=3: 0 0 1 0 0 0 0 0 0 0 0 0 %e A379668 n=4: 0 0 0 2 0 0 0 0 0 0 0 0 %e A379668 n=5: 0 0 0 0 1 1 0 0 0 0 0 0 %e A379668 n=6: 0 0 0 0 0 1 0 2 1 0 0 0 %e A379668 n=7: 0 0 0 0 0 0 1 0 0 1 0 2 %e A379668 n=8: 0 0 0 0 0 0 0 1 0 0 0 1 %e A379668 n=9: 0 0 0 0 0 0 0 0 1 0 0 0 %e A379668 n=10: 0 0 0 0 0 0 0 0 0 1 0 0 %e A379668 n=11: 0 0 0 0 0 0 0 0 0 0 1 0 %e A379668 n=12: 0 0 0 0 0 0 0 0 0 0 0 1 %e A379668 For example, the A(11,48) = 3 partitions are: (4,4,3), (4,3,2,2), (3,2,2,2,2). %e A379668 Antidiagonals begin: %e A379668 n+k=1: 1 %e A379668 n+k=2: 0 0 %e A379668 n+k=3: 0 0 0 %e A379668 n+k=4: 0 0 1 0 %e A379668 n+k=5: 0 0 0 0 0 %e A379668 n+k=6: 0 0 0 1 0 0 %e A379668 n+k=7: 0 0 0 0 0 0 0 %e A379668 n+k=8: 0 0 0 0 2 0 0 0 %e A379668 n+k=9: 0 0 0 0 0 0 0 0 0 %e A379668 n+k=10: 0 0 0 0 0 1 0 0 0 0 %e A379668 n+k=11: 0 0 0 0 0 1 0 0 0 0 0 %e A379668 n+k=12: 0 0 0 0 0 0 1 0 0 0 0 0 %e A379668 n+k=13: 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A379668 n+k=14: 0 0 0 0 0 0 2 1 0 0 0 0 0 0 %e A379668 n+k=15: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 %e A379668 n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 %e A379668 For example, antidiagonal n+k=14 counts the following partitions: %e A379668 n=6: (42), (222) %e A379668 n=7: (7) %e A379668 so the 14th antidiagonal is: (0,0,0,0,0,0,2,1,0,0,0,0,0,0,0). %t A379668 nn=15; %t A379668 tt=Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *) %t A379668 tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *) %t A379668 Join@@tr (* sequence *) %Y A379668 Column sums are A001055 = factorizations, strict A045778. %Y A379668 Row sums are A002865 = partitions into parts > 1. %Y A379668 Take transpose and remove upper half (all zeros) to get A318950. %Y A379668 Allowing one gives A379666, antidiagonal sums A379667. %Y A379668 Antidiagonal sums are A379669, zeros A379670. %Y A379668 The strict case allowing ones is A379671, antidiagonal sums A379672. %Y A379668 The strict case is A379678, antidiagonal sums A379679 (zeros A379680). %Y A379668 A000041 counts integer partitions, strict A000009. %Y A379668 A316439 counts factorizations by length, A008284 partitions. %Y A379668 A326622 counts factorizations with integer mean, strict A328966. %Y A379668 Counting and ranking multisets by comparing sum and product: %Y A379668 - same: A001055, ranks A301987 %Y A379668 - divisible: A057567, ranks A326155 %Y A379668 - divisor: A057568, ranks A326149, see A379733 %Y A379668 - greater than: A096276 shifted right, ranks A325038 %Y A379668 - greater or equal: A096276, ranks A325044 %Y A379668 - less than: A114324, ranks A325037, see A318029 %Y A379668 - less or equal: A319005, ranks A379721, see A025147 %Y A379668 - different: A379736, ranks A379722, see A111133 %Y A379668 Cf. A003963, A028422, A069016, A319000, A319057, A319916, A325036, A325041, A325042, A326152, A326178, A379720. %K A379668 nonn,tabl %O A379668 1,33 %A A379668 _Gus Wiseman_, Dec 31 2024