cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379668 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n into parts > 1 with product k.

This page as a plain text file.
%I A379668 #17 Jan 02 2025 10:49:57
%S A379668 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,
%T A379668 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
%U A379668 0,0,0,0,1,0,0,0,0,0
%N A379668 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n into parts > 1 with product k.
%C A379668 This table counts finite multisets of positive integers > 1 by sum and product. Compare to the triangle A318950.
%F A379668 For n <= k we have A(n,k) = A318950(k,n).
%e A379668 Array begins:
%e A379668         k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
%e A379668         -----------------------------------------------
%e A379668    n=0:  1   0   0   0   0   0   0   0   0   0   0   0
%e A379668    n=1:  0   0   0   0   0   0   0   0   0   0   0   0
%e A379668    n=2:  0   1   0   0   0   0   0   0   0   0   0   0
%e A379668    n=3:  0   0   1   0   0   0   0   0   0   0   0   0
%e A379668    n=4:  0   0   0   2   0   0   0   0   0   0   0   0
%e A379668    n=5:  0   0   0   0   1   1   0   0   0   0   0   0
%e A379668    n=6:  0   0   0   0   0   1   0   2   1   0   0   0
%e A379668    n=7:  0   0   0   0   0   0   1   0   0   1   0   2
%e A379668    n=8:  0   0   0   0   0   0   0   1   0   0   0   1
%e A379668    n=9:  0   0   0   0   0   0   0   0   1   0   0   0
%e A379668   n=10:  0   0   0   0   0   0   0   0   0   1   0   0
%e A379668   n=11:  0   0   0   0   0   0   0   0   0   0   1   0
%e A379668   n=12:  0   0   0   0   0   0   0   0   0   0   0   1
%e A379668 For example, the A(11,48) = 3 partitions are: (4,4,3), (4,3,2,2), (3,2,2,2,2).
%e A379668 Antidiagonals begin:
%e A379668    n+k=1: 1
%e A379668    n+k=2: 0 0
%e A379668    n+k=3: 0 0 0
%e A379668    n+k=4: 0 0 1 0
%e A379668    n+k=5: 0 0 0 0 0
%e A379668    n+k=6: 0 0 0 1 0 0
%e A379668    n+k=7: 0 0 0 0 0 0 0
%e A379668    n+k=8: 0 0 0 0 2 0 0 0
%e A379668    n+k=9: 0 0 0 0 0 0 0 0 0
%e A379668   n+k=10: 0 0 0 0 0 1 0 0 0 0
%e A379668   n+k=11: 0 0 0 0 0 1 0 0 0 0 0
%e A379668   n+k=12: 0 0 0 0 0 0 1 0 0 0 0 0
%e A379668   n+k=13: 0 0 0 0 0 0 0 0 0 0 0 0 0
%e A379668   n+k=14: 0 0 0 0 0 0 2 1 0 0 0 0 0 0
%e A379668   n+k=15: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
%e A379668   n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
%e A379668 For example, antidiagonal n+k=14 counts the following partitions:
%e A379668   n=6: (42), (222)
%e A379668   n=7: (7)
%e A379668 so the 14th antidiagonal is: (0,0,0,0,0,0,2,1,0,0,0,0,0,0,0).
%t A379668 nn=15;
%t A379668 tt=Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
%t A379668 tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
%t A379668 Join@@tr (* sequence *)
%Y A379668 Column sums are A001055 = factorizations, strict A045778.
%Y A379668 Row sums are A002865 = partitions into parts > 1.
%Y A379668 Take transpose and remove upper half (all zeros) to get A318950.
%Y A379668 Allowing one gives A379666, antidiagonal sums A379667.
%Y A379668 Antidiagonal sums are A379669, zeros A379670.
%Y A379668 The strict case allowing ones is A379671, antidiagonal sums A379672.
%Y A379668 The strict case is A379678, antidiagonal sums A379679 (zeros A379680).
%Y A379668 A000041 counts integer partitions, strict A000009.
%Y A379668 A316439 counts factorizations by length, A008284 partitions.
%Y A379668 A326622 counts factorizations with integer mean, strict A328966.
%Y A379668 Counting and ranking multisets by comparing sum and product:
%Y A379668 - same: A001055, ranks A301987
%Y A379668 - divisible: A057567, ranks A326155
%Y A379668 - divisor: A057568, ranks A326149, see A379733
%Y A379668 - greater than: A096276 shifted right, ranks A325038
%Y A379668 - greater or equal: A096276, ranks A325044
%Y A379668 - less than: A114324, ranks A325037, see A318029
%Y A379668 - less or equal: A319005, ranks A379721, see A025147
%Y A379668 - different: A379736, ranks A379722, see A111133
%Y A379668 Cf. A003963, A028422, A069016, A319000, A319057, A319916, A325036, A325041, A325042, A326152, A326178, A379720.
%K A379668 nonn,tabl
%O A379668 1,33
%A A379668 _Gus Wiseman_, Dec 31 2024