This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379669 #6 Jan 03 2025 23:28:40 %S A379669 0,1,0,0,1,0,1,0,2,0,1,1,1,0,3,1,1,1,1,2,2,0,1,2,4,0,3,1,1,3,1,1,2,2, %T A379669 3,3,2,0,2,3,2,2,4,1,4,0,3,4,2,2,2,3,1,2,4,2,3,0,1,8,3,1,4,2,3,3,2,1, %U A379669 3,5,1,4,3,1,4,2,7,2,3,4,3,0,2,4,6,2,4,4 %N A379669 Number of finite multisets of positive integers > 1 with sum + product = n. %e A379669 The partition (3,2,2) has sum + product equal to 7 + 12 = 19, so is counted under a(19). %e A379669 The a(n) partitions for n = 4, 8, 14, 24, 59: %e A379669 (2) (4) (7) (12) (9,5) %e A379669 (2,2) (4,2) (4,4) (11,4) %e A379669 (2,2,2) (4,2,2) (14,3) %e A379669 (2,2,2,2) (19,2) %e A379669 (4,4,3) %e A379669 (11,2,2) %e A379669 (4,3,2,2) %e A379669 (3,2,2,2,2) %t A379669 Table[Length[Select[Select[Join@@Array[IntegerPartitions,n+1,0],FreeQ[#,1]&],Total[#]+Times@@#==n&]],{n,0,30}] %Y A379669 Arrays counting multisets by sum and product: %Y A379669 - partitions: A379666, antidiagonal sums A379667 %Y A379669 - partitions without ones: A379668, antidiagonal sums A379669 (this) (zeros A379670) %Y A379669 - strict partitions: A379671, antidiagonal sums A379672 %Y A379669 - strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680) %Y A379669 Counting and ranking multisets by comparing sum and product: %Y A379669 - same: A001055 (strict A045778), ranks A301987 %Y A379669 - divisible: A057567, ranks A326155 %Y A379669 - divisor: A057568, ranks A326149, see A326156, A326172, A379733 %Y A379669 - greater: A096276 shifted right, ranks A325038 %Y A379669 - greater or equal: A096276, ranks A325044 %Y A379669 - less: A114324, ranks A325037, see A318029 %Y A379669 - less or equal: A319005, ranks A379721 %Y A379669 - different: A379736, ranks A379722, see A111133 %Y A379669 A000041 counts integer partitions, strict A000009. %Y A379669 A025147 counts strict partitions into parts > 1, non-strict A002865. %Y A379669 A318950 counts factorizations by sum. %Y A379669 A326622 counts factorizations with integer mean, strict A328966. %Y A379669 Cf. A003963, A069016, A319000, A319057, A319916, A325036, A326152, A326178, A379720. %K A379669 nonn %O A379669 0,9 %A A379669 _Gus Wiseman_, Jan 03 2025