cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379671 Array read by antidiagonals downward where A(n,k) is the number of finite sets of positive integers with sum n and product k.

This page as a plain text file.
%I A379671 #7 Jan 02 2025 21:27:51
%S A379671 1,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,
%T A379671 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,
%U A379671 0,0,0,0,2,0,0,0,0,0
%N A379671 Array read by antidiagonals downward where A(n,k) is the number of finite sets of positive integers with sum n and product k.
%C A379671 Counts finite sets of positive integers by sum and product.
%e A379671 Array begins:
%e A379671         k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
%e A379671         -----------------------------------------------
%e A379671    n=0:  1   0   0   0   0   0   0   0   0   0   0   0
%e A379671    n=1:  1   0   0   0   0   0   0   0   0   0   0   0
%e A379671    n=2:  0   1   0   0   0   0   0   0   0   0   0   0
%e A379671    n=3:  0   1   1   0   0   0   0   0   0   0   0   0
%e A379671    n=4:  0   0   1   1   0   0   0   0   0   0   0   0
%e A379671    n=5:  0   0   0   1   1   1   0   0   0   0   0   0
%e A379671    n=6:  0   0   0   0   1   2   0   1   0   0   0   0
%e A379671    n=7:  0   0   0   0   0   1   1   1   0   1   0   1
%e A379671    n=8:  0   0   0   0   0   0   1   1   0   1   0   2
%e A379671    n=9:  0   0   0   0   0   0   0   1   1   0   0   1
%e A379671   n=10:  0   0   0   0   0   0   0   0   1   1   0   0
%e A379671   n=11:  0   0   0   0   0   0   0   0   0   1   1   0
%e A379671   n=12:  0   0   0   0   0   0   0   0   0   0   1   1
%e A379671 The A(8,12) = 2 sets are: {2,6}, {1,3,4}.
%e A379671 The A(14,40) = 2 sets are: {4,10}, {1,5,8}.
%e A379671 Antidiagonals begin:
%e A379671    n+k=1: 1
%e A379671    n+k=2: 0 1
%e A379671    n+k=3: 0 0 0
%e A379671    n+k=4: 0 0 1 0
%e A379671    n+k=5: 0 0 0 1 0
%e A379671    n+k=6: 0 0 0 1 0 0
%e A379671    n+k=7: 0 0 0 0 1 0 0
%e A379671    n+k=8: 0 0 0 0 1 0 0 0
%e A379671    n+k=9: 0 0 0 0 0 1 0 0 0
%e A379671   n+k=10: 0 0 0 0 0 1 0 0 0 0
%e A379671   n+k=11: 0 0 0 0 0 1 1 0 0 0 0
%e A379671   n+k=12: 0 0 0 0 0 0 2 0 0 0 0 0
%e A379671   n+k=13: 0 0 0 0 0 0 0 1 0 0 0 0 0
%e A379671   n+k=14: 0 0 0 0 0 0 1 1 0 0 0 0 0 0
%e A379671   n+k=15: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
%e A379671   n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
%e A379671 For example, antidiagonal n+k=11 counts the following sets:
%e A379671   n=5: {2,3}
%e A379671   n=6: {1,5}
%e A379671 so the 11th antidiagonal is: (0,0,0,0,0,1,1,0,0,0,0).
%t A379671 nn=12;
%t A379671 tt=Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
%t A379671 tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
%t A379671 Join@@tr (* sequence *)
%Y A379671 Row sums are A000009 = strict partitions, non-strict A000041.
%Y A379671 Column sums are 2*A045778 where A045778 = strict factorizations, non-strict A001055.
%Y A379671 Antidiagonal sums are A379672, non-strict A379667 (zeros A379670).
%Y A379671 Without ones we have A379678, antidiagonal sums A379679 (zeros A379680).
%Y A379671 The non-strict version is A379666, without ones A379668.
%Y A379671 A316439 counts factorizations by length, partitions A008284.
%Y A379671 A326622 counts factorizations with integer mean, strict A328966.
%Y A379671 Counting and ranking multisets by comparing sum and product:
%Y A379671 - same: A001055, ranks A301987
%Y A379671 - divisible: A057567, ranks A326155
%Y A379671 - divisor: A057568, ranks A326149, see A379733
%Y A379671 - greater than: A096276 shifted right, ranks A325038
%Y A379671 - greater or equal: A096276, ranks A325044
%Y A379671 - less than: A114324, ranks A325037, see A318029
%Y A379671 - less or equal: A319005, ranks A379721, see A025147
%Y A379671 - different: A379736, ranks A379722, see A111133
%Y A379671 Cf. A002865, A003963, A028422, A069016, A318950, A319000, A319916, A319057, A325036, A325041, A325042, A326152.
%K A379671 nonn,tabl
%O A379671 1,73
%A A379671 _Gus Wiseman_, Jan 01 2025