This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379672 #17 Jan 11 2025 10:26:25 %S A379672 0,1,1,0,1,1,1,1,1,1,1,2,2,1,2,2,1,2,2,2,3,2,1,3,3,1,2,3,2,3,3,2,3,3, %T A379672 3,4,3,1,2,4,4,4,3,2,4,3,1,5,5,2,3,4,3,3,5,5,4,2,1,5,6,3,4,4,3,4,3,2, %U A379672 4,6,4,5,6,3,4,5,4,4,4,5,5,2,2,6,7,4,3,5 %N A379672 Number of finite sets of positive integers with sum + product = n. %C A379672 Antidiagonal sums of A379671, starting with 0. %C A379672 The only zeros are a(0) and a(3). %e A379672 The a(n) sets for n = 2, 11, 20, 35, 47, 60: %e A379672 {1} {1,5} {10} {3,8} {5,7} {30} %e A379672 {2,3} {2,6} {1,17} {1,23} {1,5,9} %e A379672 {1,3,4} {2,11} {2,15} {2,4,6} %e A379672 {1,4,6} {3,11} {1,2,19} %e A379672 {2,3,6} {1,3,14} %e A379672 {1,4,11} %t A379672 Table[Length[Select[Join@@Array[IntegerPartitions,n,0],UnsameQ@@#&&Total[#]+Times@@#==n&]],{n,0,30}] %Y A379672 Arrays counting multisets by sum and product: %Y A379672 - partitions: A379666, antidiagonal sums A379667 %Y A379672 - partitions without ones: A379668, antidiagonal sums A379669 (zeros A379670) %Y A379672 - strict partitions: A379671, antidiagonal sums A379672 (this) %Y A379672 - strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680) %Y A379672 Counting and ranking multisets by comparing sum and product: %Y A379672 - same: A001055 (strict A045778), ranks A301987 %Y A379672 - divisible: A057567, ranks A326155 %Y A379672 - divisor: A057568, ranks A326149, see A326156, A326172, A379733 %Y A379672 - greater: A096276 shifted right, ranks A325038 %Y A379672 - greater or equal: A096276, ranks A325044 %Y A379672 - less: A114324, ranks A325037, see A318029 %Y A379672 - less or equal: A319005, ranks A379721 %Y A379672 - different: A379736, ranks A379722, see A111133 %Y A379672 A000041 counts integer partitions, strict A000009. %Y A379672 A025147 counts strict partitions into parts > 1, non-strict A002865. %Y A379672 A318950 counts factorizations by sum. %Y A379672 Cf. A003963, A028422, A096765, A319000, A319057, A319916, A325036, A326152, A326178. %K A379672 nonn %O A379672 0,12 %A A379672 _Gus Wiseman_, Jan 03 2025 %E A379672 More terms from _Jinyuan Wang_, Jan 11 2025