A379679 Number of finite sets of positive integers > 1 with sum + product = n.
1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 0, 2, 2, 2, 2, 1, 1, 3, 0, 1, 4, 1, 1, 2, 2, 1, 2, 3, 2, 2, 0, 1, 4, 2, 1, 3, 1, 2, 2, 1, 1, 3, 3, 1, 4, 2, 1, 3, 2, 2, 2, 2, 3, 2, 0, 2, 4, 3, 1, 2, 3
Offset: 1
Keywords
Examples
The set {2,3,4,6} has sum 15 and product 144 so is counted under a(159). The a(n) sets for n = 47, 89, 119, 159, 179, 239: {5,7} {8,9} {2,39} {3,39} {2,59} {2,79} {2,15} {2,29} {3,29} {4,31} {3,44} {3,59} {3,11} {4,17} {4,23} {7,19} {4,35} {4,47} {2,3,6} {5,14} {5,19} {9,15} {5,29} {5,39} {2,3,12} {7,14} {2,3,22} {8,19} {7,29} {9,11} {2,4,17} {9,17} {9,23} {2,7,10} {11,14} {11,19} {2,3,4,6} {14,15} {2,9,12}
Crossrefs
Arrays counting multisets by sum and product:
Counting and ranking multisets by comparing sum and product:
A318950 counts factorizations by sum.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[Join@@Array[facs,n],UnsameQ@@#&&Total[#]+Times@@#==n&]],{n,100}]
Comments