A379683 a(n) is the least number k that has exactly n divisors <= sqrt(k) of the form 4*j+3.
1, 9, 63, 231, 945, 1890, 3465, 5775, 12285, 10395, 20790, 60060, 45045, 75075, 98175, 103950, 176715, 135135, 225225, 270270, 405405, 900900, 1060290, 810810, 765765, 675675, 1354815, 1351350, 1711710, 2702700, 2027025, 4542615, 2297295, 3378375, 5360355, 6216210, 3828825, 6774075, 10270260
Offset: 0
Keywords
Examples
a(3) = 231 because 231 has exactly 3 divisors <= sqrt(231) of the form 4*j+3, namely 3, 7 and 11, and this is the least number that works.
Crossrefs
Cf. A364387.
Programs
-
Maple
N:= 90: # for a(0) .. a(N) f:= proc(n) nops(select(t -> t mod 4 = 3 and t^2 <= n, numtheory:-divisors(n))) end proc: V:= Array(0..N): count:= 0: for n from 1 while count < N+1 do v:= f(n); if v <= N and V[v] = 0 then V[v]:= n; count:= count+1 fi; od: convert(V,list);
Comments