This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379707 #20 May 06 2025 11:30:47 %S A379707 1,2,5,19,133,2605,1128365,68731541392,1180735736455875189405, %T A379707 170141183460507927984536600089529165335, %U A379707 7237005577335553223087828975127304180898559033209149835788539833222132944557 %N A379707 Number of nonempty labeled antichains of subsets of [n] such that all subsets except possibly those of the largest size are disjoint. %F A379707 a(n) = 1 + Sum_{s=1..n} (Sum_{i=0..n-s} binomial(n,i) * (2^binomial(n-i,s) - 1) * A229223(i,s-1)). %e A379707 For n < 4 all nonempty labeled antichains are counted. When n=6 antichains such as {{1,2,6},{1,4},{1,5}} are not counted, while {{1,2,4},{1,2,6},{3},{5}} is counted. %o A379707 (Python) %o A379707 from math import comb %o A379707 def rS2(n,k,m): %o A379707 if n < 1 and k < 1: return 1 %o A379707 elif n < 1 or k < 1: return 0 %o A379707 else: return k*rS2(n-1,k,m) + rS2(n-1,k-1,m)- comb(n-1,m)*rS2(n-1-m,k-1,m) %o A379707 def A229223(n,k): %o A379707 return sum(rS2(n,x,k) for x in range(n+1)) %o A379707 def A379707(n): %o A379707 return 1+sum(sum(comb(n,i)*(2**comb(n-i,s)-1)*A229223(i,s-1) for i in range(n-s+1)) for s in range(1,n+1)) %Y A379707 Cf. A000372, A014466, A229223, A245567, A305844, A379706. %K A379707 nonn,easy %O A379707 0,2 %A A379707 _John Tyler Rascoe_, Dec 30 2024