This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379708 #11 Jan 03 2025 09:28:25 %S A379708 9,4,2,3,4,6,3,2,6,6,2,1,9,3,7,3,5,6,0,1,5,0,3,5,0,6,5,2,0,5,4,9,1,5, %T A379708 9,8,7,4,9,9,7,3,1,0,4,5,3,7,0,8,1,3,1,2,1,3,8,8,6,9,4,7,9,2,6,1,9,5, %U A379708 9,3,1,5,5,2,8,1,8,5,8,9,0,6,7,9,3,6,7,1,2,5 %N A379708 Decimal expansion of the surface area of a disdyakis triacontahedron with unit shorter edge length. %C A379708 The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron). %H A379708 Paolo Xausa, <a href="/A379708/b379708.txt">Table of n, a(n) for n = 2..10000</a> %H A379708 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>. %H A379708 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>. %F A379708 Equals sqrt(22626/5 + 9738/sqrt(5)) = sqrt(22626/5 + 9738/A002163). %e A379708 94.234632662193735601503506520549159874997310453708... %t A379708 First[RealDigits[Sqrt[22626/5 + 9738/Sqrt[5]], 10, 100]] (* or *) %t A379708 First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "SurfaceArea"], 10, 100]] %Y A379708 Cf. A379709 (volume), A379710 (inradius), A379388 (midradius), A379711 (dihedral angle). %Y A379708 Cf. A377796 (surface area of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length). %Y A379708 Cf. A002163. %K A379708 nonn,cons,easy %O A379708 2,1 %A A379708 _Paolo Xausa_, Dec 31 2024