This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379709 #9 Jan 03 2025 09:28:15 %S A379709 8,4,1,8,1,9,7,5,4,4,0,0,4,8,1,3,1,3,5,1,8,9,5,9,9,4,2,9,2,9,3,3,9,8, %T A379709 1,7,4,4,4,0,3,2,9,9,1,2,0,7,3,8,5,0,6,3,8,7,5,2,1,0,9,1,6,2,1,5,3,7, %U A379709 8,3,6,6,8,8,1,7,2,9,7,5,6,7,5,1,5,9,3,6,7,5 %N A379709 Decimal expansion of the volume of a disdyakis triacontahedron with unit shorter edge length. %C A379709 The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron). %H A379709 Paolo Xausa, <a href="/A379709/b379709.txt">Table of n, a(n) for n = 2..10000</a> %H A379709 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>. %H A379709 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>. %F A379709 Equals sqrt(88590 + 39612*sqrt(5))/5 = sqrt(88590 + 39612*A002163)/5. %e A379709 84.1819754400481313518959942929339817444032991207... %t A379709 First[RealDigits[Sqrt[88590 + 39612*Sqrt[5]]/5, 10, 100]] (* or *) %t A379709 First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "Volume"], 10, 100]] %Y A379709 Cf. A379708 (surface area), A379710 (inradius), A379388 (midradius), A379711 (dihedral angle). %Y A379709 Cf. A377797 (volume of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length). %Y A379709 Cf. A002163. %K A379709 nonn,cons,easy %O A379709 2,1 %A A379709 _Paolo Xausa_, Dec 31 2024