This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379710 #10 Jan 03 2025 09:28:29 %S A379710 2,6,7,9,9,6,9,3,4,0,2,0,4,8,3,5,5,7,8,5,7,9,5,5,3,3,2,7,4,5,9,8,0,6, %T A379710 7,6,7,0,8,5,4,2,3,0,3,8,1,6,8,2,7,7,3,3,2,1,5,2,6,8,9,0,3,6,3,3,7,1, %U A379710 5,1,7,6,3,8,1,7,0,2,0,9,1,9,7,1,5,0,0,0,0,6 %N A379710 Decimal expansion of the inradius of a disdyakis triacontahedron with unit shorter edge length. %C A379710 The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron). %H A379710 Paolo Xausa, <a href="/A379710/b379710.txt">Table of n, a(n) for n = 1..10000</a> %H A379710 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>. %H A379710 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>. %F A379710 Equals sqrt(3477/964 + 7707/(964*sqrt(5))) = sqrt(3477/964 + 7707/(964*A002163)). %e A379710 2.679969340204835578579553327459806767085423038168... %t A379710 First[RealDigits[Sqrt[3477/964 + 7707/(964*Sqrt[5])], 10, 100]] (* or *) %t A379710 First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "Inradius"], 10, 100]] %Y A379710 Cf. A379708 (surface area), A379709 (volume), A379388 (midradius), A379711 (dihedral angle). %Y A379710 Cf. A002163. %K A379710 nonn,cons,easy %O A379710 1,1 %A A379710 _Paolo Xausa_, Dec 31 2024