cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379710 Decimal expansion of the inradius of a disdyakis triacontahedron with unit shorter edge length.

This page as a plain text file.
%I A379710 #10 Jan 03 2025 09:28:29
%S A379710 2,6,7,9,9,6,9,3,4,0,2,0,4,8,3,5,5,7,8,5,7,9,5,5,3,3,2,7,4,5,9,8,0,6,
%T A379710 7,6,7,0,8,5,4,2,3,0,3,8,1,6,8,2,7,7,3,3,2,1,5,2,6,8,9,0,3,6,3,3,7,1,
%U A379710 5,1,7,6,3,8,1,7,0,2,0,9,1,9,7,1,5,0,0,0,0,6
%N A379710 Decimal expansion of the inradius of a disdyakis triacontahedron with unit shorter edge length.
%C A379710 The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).
%H A379710 Paolo Xausa, <a href="/A379710/b379710.txt">Table of n, a(n) for n = 1..10000</a>
%H A379710 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>.
%H A379710 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>.
%F A379710 Equals sqrt(3477/964 + 7707/(964*sqrt(5))) = sqrt(3477/964 + 7707/(964*A002163)).
%e A379710 2.679969340204835578579553327459806767085423038168...
%t A379710 First[RealDigits[Sqrt[3477/964 + 7707/(964*Sqrt[5])], 10, 100]] (* or *)
%t A379710 First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "Inradius"], 10, 100]]
%Y A379710 Cf. A379708 (surface area), A379709 (volume), A379388 (midradius), A379711 (dihedral angle).
%Y A379710 Cf. A002163.
%K A379710 nonn,cons,easy
%O A379710 1,1
%A A379710 _Paolo Xausa_, Dec 31 2024