This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379711 #12 Jan 03 2025 09:28:19 %S A379711 2,8,7,7,8,3,6,6,1,0,4,6,1,2,2,4,2,8,0,9,4,3,4,5,0,4,5,4,8,1,7,9,9,1, %T A379711 7,7,5,4,7,4,9,4,2,8,6,6,5,4,0,6,4,7,0,3,4,5,6,8,2,6,3,2,1,6,9,8,3,8, %U A379711 3,1,7,6,7,0,9,4,3,8,4,5,9,9,1,5,6,6,8,4,9,7 %N A379711 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis triacontahedron. %C A379711 The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron). %H A379711 Paolo Xausa, <a href="/A379711/b379711.txt">Table of n, a(n) for n = 1..10000</a> %H A379711 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>. %H A379711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>. %F A379711 Equals arccos((-179 - 24*sqrt(5))/241) = arccos((-179 - 24*A002163)/241). %e A379711 2.8778366104612242809434504548179917754749428665406... %t A379711 First[RealDigits[ArcCos[(-179 - 24*Sqrt[5])/241], 10, 100]] (* or *) %t A379711 First[RealDigits[First[PolyhedronData["DisdyakisTriacontahedron", "DihedralAngles"]], 10, 100]] %Y A379711 Cf. A379708 (surface area), A379709 (volume), A379710 (inradius), A379388 (midradius). %Y A379711 Cf. A344075, A377995 and A377996 (dihedral angles of a truncated icosidodecahedron (great rhombicosidodecahedron)). %Y A379711 Cf. A002163. %K A379711 nonn,cons,easy %O A379711 1,1 %A A379711 _Paolo Xausa_, Dec 31 2024