cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379714 Partial alternating sums of the number of exponential divisors function (A049419).

This page as a plain text file.
%I A379714 #9 Dec 31 2024 20:18:58
%S A379714 1,0,1,-1,0,-1,0,-2,0,-1,0,-2,-1,-2,-1,-4,-3,-5,-4,-6,-5,-6,-5,-7,-5,
%T A379714 -6,-4,-6,-5,-6,-5,-7,-6,-7,-6,-10,-9,-10,-9,-11,-10,-11,-10,-12,-10,
%U A379714 -11,-10,-13,-11,-13,-12,-14,-13,-15,-14,-16,-15,-16,-15,-17,-16
%N A379714 Partial alternating sums of the number of exponential divisors function (A049419).
%H A379714 Amiram Eldar, <a href="/A379714/b379714.txt">Table of n, a(n) for n = 1..10000</a>
%H A379714 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.15, p. 36.
%F A379714 a(n) = Sum_{k=1..n} (-1)^(k+1) * A049419(k).
%F A379714 Limit_{n->oo} a(n)/n = A327837 * (2/(A065442 + 1) - 1) = -0.37293122584744001729... .
%t A379714 f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Table[(-1)^(n+1)*ediv[n], {n, 1, 100}]]
%o A379714 (PARI) ediv(n) = vecprod(apply(numdiv, factor(n)[, 2]));
%o A379714 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) * ediv(k); print1(s, ", "))};
%Y A379714 Cf. A049419, A065442, A145353, A327837.
%Y A379714 Similar sequences: A068762, A068773, A307704, A357817, A370895, A370896.
%K A379714 sign,easy
%O A379714 1,8
%A A379714 _Amiram Eldar_, Dec 30 2024