cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379715 The second Jordan totient function applied to the squarefree numbers.

This page as a plain text file.
%I A379715 #14 Jan 04 2025 02:48:29
%S A379715 1,3,8,24,24,48,72,120,168,144,192,288,360,384,360,528,504,840,576,
%T A379715 960,960,864,1152,1368,1080,1344,1680,1152,1848,1584,2208,2304,2808,
%U A379715 2880,2880,2520,3480,3720,2880,4032,2880,4488,4224,3456,5040,5328,4104,5760,4032
%N A379715 The second Jordan totient function applied to the squarefree numbers.
%H A379715 Amiram Eldar, <a href="/A379715/b379715.txt">Table of n, a(n) for n = 1..10000</a>
%H A379715 Mohammadreza Esfandiari, <a href="https://doi.org/10.1007/s41980-020-00356-y">On the Means of Jordan's Totient Function</a>, Bull. Iran. Math. Soc., Vol. 46 (2020), pp. 1753-1765.
%H A379715 R. Sitaramachandrarao, <a href="https://doi.org/10.1216/RMJ-1985-15-2-579">On an error term of Landau - II</a>, Rocky Mountain J. Math., Vol. 15, No. 2 (1985), pp. 579-588. See p. 581.
%F A379715 a(n) = A007434(A005117(n)).
%F A379715 Sum_{n>=1} 1/a(n) = zeta(2) (A013661) (Sitaramachandrarao, 1985).
%F A379715 In general, Sum_{m squarefree} 1/J_k(m) = zeta(k), for k >= 2, where J_k is the k-th Jordan totient function.
%F A379715 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2)^3 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) =  A013661^3 * A330523 = 2.38520727393117206135... . - _Amiram Eldar_, Jan 03 2025
%t A379715 f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; j2 /@ Select[Range[100], SquareFreeQ]
%o A379715 (PARI) j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
%o A379715 list(lim) = apply(j2, select(issquarefree, vector(lim, i, i)));
%Y A379715 Cf. A005117, A007434, A013661, A049200 (analogous with J_1 = phi), A330523, A379716, A379717, A379718.
%K A379715 nonn,easy
%O A379715 1,2
%A A379715 _Amiram Eldar_, Dec 30 2024