cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379717 The second Jordan totient function applied to the cubefree numbers.

This page as a plain text file.
%I A379717 #17 Jan 04 2025 02:48:34
%S A379717 1,3,8,12,24,24,48,72,72,120,96,168,144,192,288,216,360,288,384,360,
%T A379717 528,600,504,576,840,576,960,960,864,1152,864,1368,1080,1344,1680,
%U A379717 1152,1848,1440,1728,1584,2208,2352,1800,2304,2016,2808,2880,2880,2520,3480,2304
%N A379717 The second Jordan totient function applied to the cubefree numbers.
%H A379717 Amiram Eldar, <a href="/A379717/b379717.txt">Table of n, a(n) for n = 1..10000</a>
%F A379717 a(n) = A007434(A004709(n)).
%F A379717 Sum_{n>=1} 1/a(n) = zeta(2) * zeta(4) / zeta(8) = 35 / (2*Pi^2) = 1.77312071374091100026... .
%F A379717 In general, Sum_{m cubefree} 1/J_k(m) = zeta(k) * zeta(2*k) / zeta(4*k), for k >= 2, where J_k is the k-th Jordan totient function.
%F A379717 In general, Sum_{m k-free} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^(2*k)), for k >= 2.
%F A379717 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3)^3 * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 1.23061243656940899916... . - _Amiram Eldar_, Jan 03 2025
%t A379717 f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := Max[FactorInteger[n][[;;, 2]]] < 3; j2 /@ Select[Range[100], cubeFreeQ]
%o A379717 (PARI) j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
%o A379717 iscubefree(n) = if(n == 1, 1, vecmax(factor(n)[, 2]) < 3);
%o A379717 list(lim) = apply(j2, select(iscubefree, vector(lim, i, i)));
%Y A379717 Cf. A002117, A004709, A007434, A013661, A358039 (analogous with J_1 = phi), A379715, A379716, A379718.
%K A379717 nonn,easy
%O A379717 1,2
%A A379717 _Amiram Eldar_, Dec 31 2024