A379720 Except a(0)=1 and a(4)=0, number of integer partitions of n with no 1's and at least two parts.
1, 0, 0, 0, 0, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164, 209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, 2166, 2572, 3093, 3659, 4377, 5169, 6152, 7244, 8590, 10086, 11913, 13958, 16423, 19195, 22518, 26251, 30700, 35716
Offset: 0
Keywords
Examples
The a(5) = 1 through a(11) = 13 partitions: (3,2) (3,3) (4,3) (4,4) (5,4) (5,5) (6,5) (4,2) (5,2) (5,3) (6,3) (6,4) (7,4) (2,2,2) (3,2,2) (6,2) (7,2) (7,3) (8,3) (3,3,2) (3,3,3) (8,2) (9,2) (4,2,2) (4,3,2) (4,3,3) (4,4,3) (2,2,2,2) (5,2,2) (4,4,2) (5,3,3) (3,2,2,2) (5,3,2) (5,4,2) (6,2,2) (6,3,2) (3,3,2,2) (7,2,2) (4,2,2,2) (3,3,3,2) (2,2,2,2,2) (4,3,2,2) (5,2,2,2) (3,2,2,2,2)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Plus@@#
Formula
Except for n = 0 and n = 4, we have a(n) = A002865(n) - 1.
Comments