cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379722 Numbers whose prime indices do not have the same sum as product.

This page as a plain text file.
%I A379722 #6 Jan 08 2025 19:37:48
%S A379722 1,4,6,8,10,12,14,15,16,18,20,21,22,24,25,26,27,28,32,33,34,35,36,38,
%T A379722 39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,
%U A379722 69,70,72,74,75,76,77,78,80,81,82,85,86,87,88,90,91,92,93
%N A379722 Numbers whose prime indices do not have the same sum as product.
%C A379722 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A379722 Partitions of this type are counted by A379736.
%C A379722 The complement is A301987, counted by A001055.
%e A379722 The terms together with their prime indices begin:
%e A379722     1: {}
%e A379722     4: {1,1}
%e A379722     6: {1,2}
%e A379722     8: {1,1,1}
%e A379722    10: {1,3}
%e A379722    12: {1,1,2}
%e A379722    14: {1,4}
%e A379722    15: {2,3}
%e A379722    16: {1,1,1,1}
%e A379722    18: {1,2,2}
%e A379722    20: {1,1,3}
%e A379722    21: {2,4}
%e A379722    22: {1,5}
%e A379722    24: {1,1,1,2}
%e A379722    25: {3,3}
%e A379722    26: {1,6}
%e A379722    27: {2,2,2}
%e A379722    28: {1,1,4}
%e A379722    32: {1,1,1,1,1}
%t A379722 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A379722 Select[Range[100],Times@@prix[#]!=Total[prix[#]]&]
%Y A379722 Nonzeros of A325036.
%Y A379722 A000040 lists the primes, differences A001223.
%Y A379722 A055396 gives least prime index, greatest A061395.
%Y A379722 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A379722 A324851 finds numbers > 1 divisible by the sum of their prime indices.
%Y A379722 A379666 counts partitions by sum and product, without 1's A379668.
%Y A379722 A379681 gives sum plus product of prime indices, firsts A379682.
%Y A379722 Counting and ranking multisets by comparing sum and product:
%Y A379722 - same: A001055 (strict A045778), ranks A301987
%Y A379722 - divisible: A057567, ranks A326155
%Y A379722 - divisor: A057568, ranks A326149, see A379733
%Y A379722 - greater: A096276 shifted right, ranks A325038
%Y A379722 - greater or equal: A096276, ranks A325044
%Y A379722 - less: A114324, ranks A325037, see A318029
%Y A379722 - less or equal: A319005, ranks A379721
%Y A379722 - different: A379736, ranks A379722 (this)
%Y A379722 Cf. A000720, A003963, A025147, A075254, A111133, A178503, A319000, A325041.
%K A379722 nonn
%O A379722 1,2
%A A379722 _Gus Wiseman_, Jan 08 2025