This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379722 #6 Jan 08 2025 19:37:48 %S A379722 1,4,6,8,10,12,14,15,16,18,20,21,22,24,25,26,27,28,32,33,34,35,36,38, %T A379722 39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68, %U A379722 69,70,72,74,75,76,77,78,80,81,82,85,86,87,88,90,91,92,93 %N A379722 Numbers whose prime indices do not have the same sum as product. %C A379722 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A379722 Partitions of this type are counted by A379736. %C A379722 The complement is A301987, counted by A001055. %e A379722 The terms together with their prime indices begin: %e A379722 1: {} %e A379722 4: {1,1} %e A379722 6: {1,2} %e A379722 8: {1,1,1} %e A379722 10: {1,3} %e A379722 12: {1,1,2} %e A379722 14: {1,4} %e A379722 15: {2,3} %e A379722 16: {1,1,1,1} %e A379722 18: {1,2,2} %e A379722 20: {1,1,3} %e A379722 21: {2,4} %e A379722 22: {1,5} %e A379722 24: {1,1,1,2} %e A379722 25: {3,3} %e A379722 26: {1,6} %e A379722 27: {2,2,2} %e A379722 28: {1,1,4} %e A379722 32: {1,1,1,1,1} %t A379722 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A379722 Select[Range[100],Times@@prix[#]!=Total[prix[#]]&] %Y A379722 Nonzeros of A325036. %Y A379722 A000040 lists the primes, differences A001223. %Y A379722 A055396 gives least prime index, greatest A061395. %Y A379722 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A379722 A324851 finds numbers > 1 divisible by the sum of their prime indices. %Y A379722 A379666 counts partitions by sum and product, without 1's A379668. %Y A379722 A379681 gives sum plus product of prime indices, firsts A379682. %Y A379722 Counting and ranking multisets by comparing sum and product: %Y A379722 - same: A001055 (strict A045778), ranks A301987 %Y A379722 - divisible: A057567, ranks A326155 %Y A379722 - divisor: A057568, ranks A326149, see A379733 %Y A379722 - greater: A096276 shifted right, ranks A325038 %Y A379722 - greater or equal: A096276, ranks A325044 %Y A379722 - less: A114324, ranks A325037, see A318029 %Y A379722 - less or equal: A319005, ranks A379721 %Y A379722 - different: A379736, ranks A379722 (this) %Y A379722 Cf. A000720, A003963, A025147, A075254, A111133, A178503, A319000, A325041. %K A379722 nonn %O A379722 1,2 %A A379722 _Gus Wiseman_, Jan 08 2025