cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379723 Possible values of the sum of squares of divisors function (A001157).

This page as a plain text file.
%I A379723 #22 Jan 04 2025 02:48:43
%S A379723 1,5,10,21,26,50,85,91,122,130,170,210,250,260,290,341,362,455,500,
%T A379723 530,546,610,651,820,842,850,962,1050,1220,1300,1365,1370,1450,1682,
%U A379723 1700,1810,1850,1911,2210,2366,2451,2500,2562,2650,2810,2900,3172,3255,3410,3482
%N A379723 Possible values of the sum of squares of divisors function (A001157).
%C A379723 The distinct values of the sigma_2(n) function, in ascending order.
%C A379723 The asymptotic density of this sequence is 0 (Niven, 1951).
%C A379723 5460 = sigma_2(60) and 5461 = sigma_2(64) are two consecutive integers in this sequence. Are there any other such pairs? There are none below 10^10.
%H A379723 Amiram Eldar, <a href="/A379723/b379723.txt">Table of n, a(n) for n = 1..10000</a>
%H A379723 Max Alekseyev, <a href="https://oeis.org/wiki/User:Max_Alekseyev/gpscripts#Inversion_of_Multiplicative_Functions">PARI/GP Scripts for Miscellaneous Math Problems: Inversion of Multiplicative Functions</a> (invphi.gp).
%H A379723 Ivan Niven, <a href="https://doi.org/10.1090/S0002-9904-1951-09543-9">The asymptotic density of sequences</a>, Bull. Amer. Math. Soc., Vol. 57 (1951), pp. 420-434. See Theorem 3, p. 429.
%t A379723 seq[lim_] := Select[Union[DivisorSigma[2, Range[lim]]], # <= lim &]; seq[3500]
%o A379723 (PARI) is(n) = invsigmaNum(n, 2) > 0; \\ _Amiram Eldar_, Jan 03 2025, using _Max Alekseyev_'s invphi.gp
%Y A379723 Cf. A001157, A002191, A002202.
%Y A379723 A066872 is a subsequence.
%Y A379723 Subsequence of A211347.
%K A379723 nonn,easy
%O A379723 1,2
%A A379723 _Amiram Eldar_, Jan 03 2025