This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379733 #9 Jan 07 2025 19:05:13 %S A379733 1,1,1,1,1,2,1,1,2,3,1,5,1,5,7,7,1,12,1,20,15,11,1,48,12,16,33,61,1, %T A379733 121,1,105,67,34,126,292,1,49,128,471,1,522,1,387,751,96,1,1556,246, %U A379733 792,422,869,1,2126,1191,2904,726,240,1,6393,1,321,5460,6711 %N A379733 Number of strict integer partitions of n whose product of parts is a multiple of n. %C A379733 Partitions of this type are ranked by the squarefree terms of A326149. %e A379733 The a(n) partitions for n = 1, 6, 10, 12, 15, 18: %e A379733 (1) (6) (10) (12) (15) (18) %e A379733 (3,2,1) (5,3,2) (5,4,3) (6,5,4) (12,6) %e A379733 (5,4,1) (6,4,2) (7,5,3) (9,5,4) %e A379733 (8,3,1) (9,5,1) (9,6,3) %e A379733 (6,3,2,1) (10,3,2) (9,7,2) %e A379733 (6,5,3,1) (9,8,1) %e A379733 (5,4,3,2,1) (6,5,4,3) %e A379733 (7,6,3,2) %e A379733 (8,6,3,1) %e A379733 (9,4,3,2) %e A379733 (9,6,2,1) %e A379733 (12,3,2,1) %p A379733 b:= proc(n, i, t) option remember; `if`(i*(i+1)/2<n, 0, %p A379733 `if`(n=0, `if`(t=1, 1, 0), b(n, i-1, t)+ %p A379733 b(n-i, min(i-1, n-i), t/igcd(i, t)))) %p A379733 end: %p A379733 a:= n-> `if`(isprime(n), 1, b(n$3)): %p A379733 seq(a(n), n=1..70); # _Alois P. Heinz_, Jan 07 2025 %t A379733 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@#,n]&]],{n,30}] %Y A379733 The non-strict opposite version is A057567, ranks A326155. %Y A379733 The non-strict version is A057568, ranks A326149. %Y A379733 The case of partitions without 1's is A379735, non-strict A379734. %Y A379733 A319005 counts partitions with product >= sum, ranks A379721. %Y A379733 A114324 counts partitions with product greater than sum, ranks A325037. %Y A379733 Cf. A001055, A003963, A069016, A096276, A111133, A318950, A319000, A319057, A319916, A326152, A379720. %K A379733 nonn %O A379733 1,6 %A A379733 _Gus Wiseman_, Jan 07 2025