This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379735 #8 Jan 07 2025 21:20:53 %S A379735 0,1,1,1,1,1,1,1,2,2,1,3,1,3,4,4,1,8,1,11,9,7,1,26,7,10,18,33,1,67,1, %T A379735 56,37,20,69,158,1,27,70,252,1,280,1,207,402,52,1,834,133,423,226,465, %U A379735 1,1132,635,1541,388,129,1,3377,1,171,2891,3561,1674,3154 %N A379735 Number of strict integer partitions of n into parts > 1 whose product is a multiple of n. %C A379735 These partitions are ranked by the odd squarefree terms of A326149. %e A379735 The a(n) partitions for n = 2, 9, 12, 15, 18, 20, 21: %e A379735 (2) (9) (12) (15) (18) (20) (21) %e A379735 (6,3) (5,4,3) (6,5,4) (12,6) (8,7,5) (8,7,6) %e A379735 (6,4,2) (7,5,3) (9,5,4) (10,6,4) (9,7,5) %e A379735 (10,3,2) (9,6,3) (10,8,2) (11,7,3) %e A379735 (9,7,2) (11,5,4) (12,7,2) %e A379735 (6,5,4,3) (12,5,3) (14,4,3) %e A379735 (7,6,3,2) (7,6,5,2) (7,6,5,3) %e A379735 (9,4,3,2) (8,5,4,3) (9,7,3,2) %e A379735 (9,5,4,2) (7,5,4,3,2) %e A379735 (10,5,3,2) %e A379735 (6,5,4,3,2) %t A379735 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&UnsameQ@@#&&Divisible[Times@@#,n]&]],{n,30}] %Y A379735 Allowing 1's gives A379733. %Y A379735 The non-strict version is A379734, allowing 1's A057568. %Y A379735 A000041 counts integer partitions, strict A000009. %Y A379735 A002865 counts partitions into parts > 1. %Y A379735 A379666 counts partitions by sum and product, without 1's A379668. %Y A379735 Counting and ranking multisets by comparing sum and product: %Y A379735 - same: A001055, ranks A301987 %Y A379735 - divisible: A057567, ranks A326155 %Y A379735 - divisor: A057568, ranks A326149, see A379733 %Y A379735 - greater than: A096276 shifted right, ranks A325038 %Y A379735 - greater or equal: A096276, ranks A325044 %Y A379735 - less than: A114324, ranks A325037, see A318029, A379720 %Y A379735 - less or equal: A319005, ranks A379721, see A025147 %Y A379735 - different: A379736, ranks A379722, see A111133 %Y A379735 Cf. A069016, A319000, A319057, A319916, A324851, A326152, A379671, A379678. %K A379735 nonn %O A379735 1,9 %A A379735 _Gus Wiseman_, Jan 07 2025