This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379736 #5 Jan 08 2025 09:28:28 %S A379736 1,0,1,2,3,6,9,14,19,28,40,55,73,100,133,174,226,296,381,489,623,790, %T A379736 1000,1254,1568,1956,2434,3007,3714,4564,5599,6841,8342,10141,12308, %U A379736 14881,17968,21636,26013,31183,37331,44582,53169,63260,75171,89130,105556 %N A379736 Number of integer partitions of n whose product of parts is not n. %C A379736 These partitions are ranked by A379722, complement A301987. %F A379736 a(n) = A000041(n) - A001055(n). %e A379736 The a(2) = 1 through a(7) = 14 partitions: %e A379736 (11) (21) (31) (32) (33) (43) %e A379736 (111) (211) (41) (42) (52) %e A379736 (1111) (221) (51) (61) %e A379736 (311) (222) (322) %e A379736 (2111) (411) (331) %e A379736 (11111) (2211) (421) %e A379736 (3111) (511) %e A379736 (21111) (2221) %e A379736 (111111) (3211) %e A379736 (4111) %e A379736 (22111) %e A379736 (31111) %e A379736 (211111) %e A379736 (1111111) %t A379736 Table[Length[Select[IntegerPartitions[n],Times@@#!=n&]],{n,0,30}] %Y A379736 The complement is counted by A001055. %Y A379736 The strict case is A111133 (except first term). %Y A379736 A000041 counts integer partitions, strict A000009. %Y A379736 A002865 counts partitions into parts > 1, see A379734, strict A379735. %Y A379736 A324851 finds numbers > 1 divisible by the sum of their prime indices. %Y A379736 A379666 counts partitions by sum and product, without 1's A379668. %Y A379736 Counting and ranking multisets by comparing sum and product: %Y A379736 - same: A001055, ranks A301987 %Y A379736 - divisible: A057567, ranks A326155 %Y A379736 - divisor: A057568, ranks A326149, see A379733 %Y A379736 - greater than: A096276 shifted right, ranks A325038 %Y A379736 - greater or equal: A096276, ranks A325044 %Y A379736 - less than: A114324, ranks A325037, see A318029, A379720 %Y A379736 - less or equal: A319005, ranks A379721, see A025147 %Y A379736 - different: A379736 (this), ranks A379722 %Y A379736 Cf. A028422, A069016, A319000, A319916, A325036, A325041, A326152, A379671, A379678. %K A379736 nonn %O A379736 0,4 %A A379736 _Gus Wiseman_, Jan 07 2025