This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379743 #11 Jan 04 2025 22:29:33 %S A379743 3,5,7,13,11,13,29,17,19,31,23,37,53,29,31,97,103,37,191,41,43,67,47, %T A379743 73,101,53,109,113,59,61,311,97,67,103,71,73,149,191,79,241,83,127, %U A379743 173,89,181,139,283,97,197,101,103,157,107,109,331,113,229,233,709,181,367,311,127,193,131,199,269 %N A379743 a(n) is the smallest prime whose digital sum in base n is n. %C A379743 For n <= 10^5, a(n) < n^2, thus a(n) = k*n + (n-k) for some k, 1 <= k < n. Is this true for all n? %H A379743 Robert Israel, <a href="/A379743/b379743.txt">Table of n, a(n) for n = 2..10000</a> %e A379743 a(5) = 13 because the prime 13 = 23_5 with 2 + 3 = 5, and no smaller prime works. %p A379743 f:= proc(n) local k,v,x; %p A379743 for k from 1 do %p A379743 v:= convert(convert(k,base,n),`+`); %p A379743 if v > n then next fi; %p A379743 x:= n*k+(n-v); %p A379743 if isprime(x) then return x fi %p A379743 od %p A379743 end proc: %p A379743 map(f, [$2..100]); %t A379743 a[n_]:=Module[{k=1}, While[DigitSum[Prime[k],n]!=n, k++]; Prime[k]]; Array[a,67,2] (* _Stefano Spezia_, Jan 04 2025 *) %Y A379743 Cf. A214123. %K A379743 nonn,base,look %O A379743 2,1 %A A379743 _Robert Israel_, Dec 31 2024