This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379748 #41 Jan 15 2025 08:35:44 %S A379748 1,1,1,1,2,1,1,2,1,1,2,1,1,3,1,1,2,1,1,3,1,1,2,1,1,3,1,1,2,2,1,3,1,1, %T A379748 2,1,1,3,1,2,2,1,1,3,1,1,2,1,1,4,1,1,2,1,2,3,1,1,2,2,1,3,1,1,2,1,1,3, %U A379748 1,3,2,1,1,3,1,1,2,1,1,4,1,1,2,1,2,3,1,1,2 %N A379748 a(n) is the number of ways to arrange any number of unit square cells into an i X j rectangle which contains exactly n square subarrays of all sizes. %C A379748 For this sequence, an i X j array and a j X i array are considered identical. %C A379748 The number of different squares in an m X k array is S(m,k) = k(k+1)(3m-k+1)/6 = A082652(m,k) so that a(n) = the number of solutions to S(m,k) = n with m >= k. %C A379748 a(n) has no upper bound. %C A379748 It appears all natural numbers appear in the sequence. This is merely conjectured, but is provably true if there are an infinite amount of Sophie-Germain primes. %F A379748 a(n) = Sum_{k=1...N} [n == k(k+1)(2k+1)/6 (mod k(k+1)/2)] where [] is the Iverson bracket and N is the largest natural number such that N(N+1)(2N+1)/6 <= n. %e A379748 For n=8, the a(8) = 2 rectangular arrays are %e A379748 ------------------------- %e A379748 |A |B |C |D |E |F |G |H | %e A379748 ------------------------- %e A379748 and %e A379748 ---------- %e A379748 |A |B |C | %e A379748 ---------- %e A379748 |D |E |F | %e A379748 ---------- %e A379748 The first contains n = 8 unit squares (and none bigger). %e A379748 The second contains 6 unit squares and two 2 X 2 squares (ABDE, BCEF), for S(3,2) = 8 = n squares. %o A379748 (Python) %o A379748 def a(n): %o A379748 output = 0 %o A379748 k = 1 %o A379748 while k*(k+1)*((2*k)+1) <= 6*n: %o A379748 if (n - (k*(k+1)*((2*k)+1)//6)) % (k*(k+1)//2) == 0: %o A379748 output += 1 %o A379748 k += 1 %o A379748 return output %Y A379748 Cf. A082652. %K A379748 nonn %O A379748 1,5 %A A379748 _Michael Adams_, Jan 02 2025