cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379756 a(n) is the number of subsets of S(n) that sum to A023196(n), where S(n) is the set of the proper divisors (or aliquot parts) of A023196(n).

This page as a plain text file.
%I A379756 #7 Feb 15 2025 14:28:15
%S A379756 1,2,2,1,5,1,3,7,3,2,10,3,2,34,2,0,31,1,6,25,1,23,21,2,1,1,20,4,1,279,
%T A379756 13,15,1,15,116,9,11,12,4,197,1,2,755,1,42,2,9,12,6,2,151,169,7,1,9,8,
%U A379756 6,2190,1,516,1,6,121,130,1,6,119,1,469,4,446,1,4,6
%N A379756 a(n) is the number of subsets of S(n) that sum to A023196(n), where S(n) is the set of the proper divisors (or aliquot parts) of A023196(n).
%C A379756 This sequence is A065205 without the terms A065205(k) where k > sigma(k)/2.
%H A379756 Felix Huber, <a href="/A379756/b379756.txt">Table of n, a(n) for n = 1..10000</a>
%H A379756 Felix Huber, <a href="/A379756/a379756.txt">Maple program to calculate the distinct subsets</a>
%F A379756 Iff a(k) = 0, A023196(k) is a weird number (A006037).
%F A379756 Iff a(k) = 1, A023196(k) is a term of A064771.
%F A379756 a(A000396(k)) = 1 (A000396: perfect numbers).
%e A379756 a(8) = 7 because exactly the 7 subsets {6, 12, 18}, {3, 6, 9, 18}, {2, 4, 12, 18}, {2, 3, 4, 9, 18}, {2, 3, 4, 6, 9, 12}, {1, 2, 6, 9, 18}, {1, 2, 3, 12, 18} of S(8) = {1, 2, 3, 4, 6, 9, 12, 18} sum to A023196(8) = 36.
%e A379756 a(16) = 0 because no subset of S(16) = {1, 2, 5, 7, 10, 14, 35} sums to A023196(16) = 70 (weird number).
%p A379756 with(NumberTheory):
%p A379756 A023196:=proc(n)
%p A379756     local a;
%p A379756     option remember;
%p A379756     if n=1 then
%p A379756         6
%p A379756     else
%p A379756         for a from procname(n-1)+1 do
%p A379756             if sigma(a)>=2*a then
%p A379756                 return a
%p A379756             fi
%p A379756         od
%p A379756     fi;
%p A379756 end proc;
%p A379756 A379756:=proc(n)
%p A379756     local b,d,l;
%p A379756     d:=sigma(A023196(n))-2*A023196(n);
%p A379756     l:= [select(x->x<=d,Divisors(A023196(n)))[]];
%p A379756     b:= proc(m,i)
%p A379756         option remember;
%p A379756         `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
%p A379756     end proc;
%p A379756     forget(b);
%p A379756     b(d,nops(l))
%p A379756 end proc;
%p A379756 seq(A379756(n),n=1..74);
%Y A379756 Cf. A000203, A000396, A001065, A005101, A023196, A026793, A027750, A033630, A033882, A064771, A065205.
%K A379756 nonn
%O A379756 1,2
%A A379756 _Felix Huber_, Feb 07 2025