This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379756 #7 Feb 15 2025 14:28:15 %S A379756 1,2,2,1,5,1,3,7,3,2,10,3,2,34,2,0,31,1,6,25,1,23,21,2,1,1,20,4,1,279, %T A379756 13,15,1,15,116,9,11,12,4,197,1,2,755,1,42,2,9,12,6,2,151,169,7,1,9,8, %U A379756 6,2190,1,516,1,6,121,130,1,6,119,1,469,4,446,1,4,6 %N A379756 a(n) is the number of subsets of S(n) that sum to A023196(n), where S(n) is the set of the proper divisors (or aliquot parts) of A023196(n). %C A379756 This sequence is A065205 without the terms A065205(k) where k > sigma(k)/2. %H A379756 Felix Huber, <a href="/A379756/b379756.txt">Table of n, a(n) for n = 1..10000</a> %H A379756 Felix Huber, <a href="/A379756/a379756.txt">Maple program to calculate the distinct subsets</a> %F A379756 Iff a(k) = 0, A023196(k) is a weird number (A006037). %F A379756 Iff a(k) = 1, A023196(k) is a term of A064771. %F A379756 a(A000396(k)) = 1 (A000396: perfect numbers). %e A379756 a(8) = 7 because exactly the 7 subsets {6, 12, 18}, {3, 6, 9, 18}, {2, 4, 12, 18}, {2, 3, 4, 9, 18}, {2, 3, 4, 6, 9, 12}, {1, 2, 6, 9, 18}, {1, 2, 3, 12, 18} of S(8) = {1, 2, 3, 4, 6, 9, 12, 18} sum to A023196(8) = 36. %e A379756 a(16) = 0 because no subset of S(16) = {1, 2, 5, 7, 10, 14, 35} sums to A023196(16) = 70 (weird number). %p A379756 with(NumberTheory): %p A379756 A023196:=proc(n) %p A379756 local a; %p A379756 option remember; %p A379756 if n=1 then %p A379756 6 %p A379756 else %p A379756 for a from procname(n-1)+1 do %p A379756 if sigma(a)>=2*a then %p A379756 return a %p A379756 fi %p A379756 od %p A379756 fi; %p A379756 end proc; %p A379756 A379756:=proc(n) %p A379756 local b,d,l; %p A379756 d:=sigma(A023196(n))-2*A023196(n); %p A379756 l:= [select(x->x<=d,Divisors(A023196(n)))[]]; %p A379756 b:= proc(m,i) %p A379756 option remember; %p A379756 `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1)))) %p A379756 end proc; %p A379756 forget(b); %p A379756 b(d,nops(l)) %p A379756 end proc; %p A379756 seq(A379756(n),n=1..74); %Y A379756 Cf. A000203, A000396, A001065, A005101, A023196, A026793, A027750, A033630, A033882, A064771, A065205. %K A379756 nonn %O A379756 1,2 %A A379756 _Felix Huber_, Feb 07 2025