A379762 Products of 4 distinct prime numbers (or tetraprimes) that are abundant.
210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1794, 1806, 1830, 1870, 1914, 1938, 1974, 2002, 2010, 2030, 2046, 2090, 2130, 2170, 2190, 2210, 2226, 2262, 2346, 2370, 2418, 2442, 2470, 2478, 2490, 2530, 2562, 2590, 2622
Offset: 1
Keywords
Examples
210 is a term because 210=2*3*5*7 is the product of four distinct primes and it is smaller than the sum of its proper divisors 366. 1155 is not a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors 1149.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F,t; F:= ifactors(n)[2]; F[..,2] = [1,1,1,1] and mul(t[1]+1, t = F) > 2*n end proc: select(filter, [seq(i,i=2..3000, 4)]); # Robert Israel, Jan 09 2025
-
Mathematica
q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) > 2]; Select[Range[3000], q] (* Amiram Eldar, Jan 09 2025 *)
-
PARI
list(lim)=my(v=List(select(k->k<=lim, [1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830]))); forprime(p=5,sqrtint(lim\6), my(t=6*p); forprime(q=p+2,lim\t, listput(v,t*q))); forprime(p=11,lim\70,listput(v,70*p)); Set(v) \\ Charles R Greathouse IV, Jan 13 2025
Formula
a(n) == 2 (mod 4).
a(n) ~ (1/6)*n log n/log log n. - Charles R Greathouse IV, Jan 13 2025
Comments