cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379772 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) is not in {1, d, k/d} and either rad(d) | k/d or rad(k/d) | d, where k = A378767(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Jan 02 2025

Keywords

Comments

Let rad = A007947 and let omega = A001221.
Number of ways to write k = A378767(n) as a product of numbers i and j, omega(i) < omega(j) = omega(i*j), that are neither coprime nor divide one another, where rad(i) | j, but rad(j) does not divide i. Both i and j are necessarily composite.

Examples

			Let s(n) = A378767(n).
a(1) = 1 since s(1) = 24 = 4*6, omega(4) < omega(6) = omega(24), rad(4) | 6.
a(2) = 1 since s(2) = 40 = 4*10, omega(4) < omega(10) = omega(40), rad(4) | 10.
a(3) = 1 since s(3) = 48 = 6*8, omega(8) < omega(6) = omega(48), rad(8) | 6.
a(9) = 2 since s(9) = 96 = 6*16 = 8*12.
a(54) = 3 since s(54) = 384 = 6*64 = 12*32 = 16*24.
a(165) = 5 since s(165) = 1080 = 4*270 = 9*120 = 12*90 = 18*60 = 30*36.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Select[Select[Range[nn],
      AnyTrue[FactorInteger[#][[All, -1]], # > 2 &] &],
        Not @* PrimePowerQ];
    Table[k = s[[n]];
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?( (m = GCD @@ {##};
          And[! MemberQ[{1, #1, #2}, m],
            And[PrimeNu[#1] < PrimeNu[#2],
              Divisible[#2, rad[#1]]] & @@
              SortBy[{##}, PrimeNu]]) & @@ # &)], {n, Length[s]}]