cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A379773 Numbers that set records in in A379772.

Original entry on oeis.org

24, 96, 384, 1080, 2160, 4320, 8640, 12960, 17280, 34560, 38880, 69120, 77760, 108000, 155520, 311040, 432000, 622080, 756000, 1512000, 2268000, 3024000, 4536000, 5292000, 6804000, 9072000, 12096000, 13608000, 21168000, 27216000, 47628000, 54432000, 74088000, 81648000
Offset: 1

Views

Author

Michael De Vlieger, Jan 04 2025

Keywords

Comments

Proper subset of the intersection A025487 and A378767.
Conjecture: a(n) is powerful (i.e., in A286708) for n >= 68. Additionally, for some n much larger than 68, a(n) may be cubefull (i.e., in A372695).

Examples

			Let b(n) = A379772(n).
Table showing exponents of prime power factors of a(n) for n = 1..20.
Example: a(5) = 2160 = 2^4 * 3^3 * 5, hence we write "4.3.1".
   n     a(n)  Exp.   b(a(n))
  ----------------------------------
   1      24   3.1      1   4*6
   2      96   5.1      2   6*16 = 8*12
   3     384   7.1      3   6*64 = 12*32 = 16*24
   4    1080   3.3.1    5   4*270 = 9*120 = 12*90 = 18*60 = 30*36
   5    2160   4.3.1    6   8*270 = 9*240 = 18*120 = 24*90 = 30*72 = 36*60
   6    4320   5.3.1    9
   7    8640   6.3.1   10
   8   12960   5.4.1   11
   9   17280   7.3.1   13
  10   34560   8.3.1   14
  11   38880   5.5.1   16
  12   69120   9.3.1   17
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not @* SquareFreeQ];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]]; nn = Length[s];
    Reap[Do[k = s[[i]];
      If[# > r, r = #; Sow[k] ] &@
        Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
          _?((m = GCD @@ {##};
          And[! MemberQ[{1, #1, #2}, m],
            And[PrimeNu[#1] < PrimeNu[#2], Divisible[#2, rad[#1]]] & @@
            SortBy[{##}, PrimeNu]]) & @@ # &)], {i, nn}] ][[-1, 1]]
Showing 1-1 of 1 results.