This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379776 #11 Jan 04 2025 12:54:15 %S A379776 1,2,3,6,5,7,4,12,25,11,20,13,40,33,43,45,27,21,44,42,14,48,71,26,8, %T A379776 72,64,41,112,23,116,82,111,46,62,53,49,152,80,75,37,262,122,9,99,93, %U A379776 38,115,52,343,28,286,22,162,104,274,36,87,47,70,171,79,18,140 %N A379776 a(n) = position of prime(n) in A379775, or a(n) = -1 if prime(n) is not in A379775. %H A379776 Robert C. Lyons, <a href="/A379776/b379776.txt">Table of n, a(n) for n = 1..10000</a> %o A379776 (Python) %o A379776 from sympy import prime, primefactors, primepi %o A379776 def get_a379776(a379775_indices): %o A379776 a379776 = [] %o A379776 count = 1 %o A379776 while True: %o A379776 p = prime(count) %o A379776 if p not in a379775_indices: %o A379776 break %o A379776 a379776.append(a379775_indices[p]) %o A379776 count += 1 %o A379776 return a379776 %o A379776 a379775 = [2] %o A379776 a379775_indices = dict() %o A379776 a379775_indices[2] = 1 %o A379776 max_a379775_len=1000 %o A379776 while len(a379775) <= max_a379775_len: %o A379776 candidate = a379775[-1] %o A379776 done = False %o A379776 while not done: %o A379776 candidate = 2*candidate - 1 %o A379776 factors = primefactors(candidate) %o A379776 for factor in factors: %o A379776 if factor not in a379775_indices: %o A379776 a379775.append(factor) %o A379776 a379775_indices[factor] = len(a379775) %o A379776 done = True %o A379776 break %o A379776 a379776 = get_a379776(a379775_indices) %o A379776 print(a379776) %Y A379776 Cf. A379775. %K A379776 nonn,easy %O A379776 1,2 %A A379776 _Robert C. Lyons_, Jan 02 2025