cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379777 Array A(n, k), n, k >= 0, read by upward antidiagonals; for any v >= 0, the value appears twice in the array: in row A002262(v) and in row A002024(v+1); values in each row are given in strictly increasing order.

This page as a plain text file.
%I A379777 #10 Jan 04 2025 11:07:18
%S A379777 0,0,1,1,2,3,3,2,4,6,6,4,5,7,10,10,7,5,8,11,15,15,11,8,9,12,16,21,21,
%T A379777 16,12,9,13,17,22,28,28,22,17,13,14,18,23,29,36,36,29,23,18,14,19,24,
%U A379777 30,37,45,45,37,30,24,19,20,25,31,38,46,55,55,46,38,31,25,20,26,32,39,47,56,66
%N A379777 Array A(n, k), n, k >= 0, read by upward antidiagonals; for any v >= 0, the value appears twice in the array: in row A002262(v) and in row A002024(v+1); values in each row are given in strictly increasing order.
%C A379777 This sequence was inspired by the game Dobble: this game is based on cards with symbols such that two distinct cards always have exactly one common symbol. Here, two distinct rows have exactly one common term.
%C A379777 This square array combines two symetrical copies of the triangular view of A001477 (the nonnegative integers):
%C A379777      0 1 3 6 .
%C A379777        2 4 7 .      0 1 3 6 .
%C A379777          5 8 .      0 2 4 7 .
%C A379777      0     9 .  ->  1 2 5 8 .
%C A379777      1 2     .      3 4 5 9 .
%C A379777      3 4 5          6 7 8 9 .
%C A379777      6 7 8 9        . . . . .
%C A379777      . . . . .
%H A379777 Rémy Sigrist, <a href="/A379777/b379777.txt">Table of n, a(n) for n = 0..10010</a>
%H A379777 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dobble">Dobble</a>
%F A379777 A(0, k) = A000217(k).
%F A379777 A(n, k) = A(k+1, n) = A000217(k) + n for any n in 0..k.
%F A379777 A(n, n) = A000096(n).
%e A379777 Array A(n, k) begins:
%e A379777   n\k |  0   1   2   3   4   5   6   7   8   9
%e A379777   ----+---------------------------------------
%e A379777     0 |  0   1   3   6  10  15  21  28  36  45
%e A379777     1 |  0   2   4   7  11  16  22  29  37  46
%e A379777     2 |  1   2   5   8  12  17  23  30  38  47
%e A379777     3 |  3   4   5   9  13  18  24  31  39  48
%e A379777     4 |  6   7   8   9  14  19  25  32  40  49
%e A379777     5 | 10  11  12  13  14  20  26  33  41  50
%e A379777     6 | 15  16  17  18  19  20  27  34  42  51
%e A379777     7 | 21  22  23  24  25  26  27  35  43  52
%e A379777     8 | 28  29  30  31  32  33  34  35  44  53
%e A379777     9 | 36  37  38  39  40  41  42  43  44  54
%e A379777    10 | 45  46  47  48  49  50  51  52  53  54
%o A379777 (PARI) A(n, k) = { my (x, y); if (n > k, x = n-1; y = k, x = k; y = n;); x*(x+1)/2 + y }
%Y A379777 Cf. A000096, A000217, A001477, A002024, A002262.
%K A379777 nonn,tabl,easy
%O A379777 0,5
%A A379777 _Rémy Sigrist_, Jan 02 2025