cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379812 a(n) = sigma_1(n) * sigma_2(n).

Original entry on oeis.org

1, 15, 40, 147, 156, 600, 400, 1275, 1183, 2340, 1464, 5880, 2380, 6000, 6240, 10571, 5220, 17745, 7240, 22932, 16000, 21960, 12720, 51000, 20181, 35700, 32800, 58800, 25260, 93600, 30784, 85995, 58560, 78300, 62400, 173901, 52060, 108600, 95200, 198900, 70644
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 2}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 2);}

Formula

a(n) = A000203(n) * A001157(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(2*e+2)-1) / ((p-1) * (p^2-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) / zeta(2*s-3).
In general, Dirichlet g.f. of sigma_i(n) * sigma_j(n): zeta(s) * zeta(s-i) * zeta(s-j) * zeta(s-i-j) / zeta(2*s-i-j) (Ramanujan, 1916).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2) * zeta(3) * zeta(4) / zeta(5) = zeta(3) * Pi^6 / (540*zeta(5)) = 2.06386841111121962734... .
In general, Sum_{k=1..n} sigma_i(k) * sigma_j(k) ~ c(i,j) * n^(i+j+1) / (i+j+1), for i, j >= 1, where c(i,j) = zeta(i+1) * zeta(j+1) * zeta(i+j+1) / zeta(i+j+2).
G.f.: Sum_{k>=1} Sum_{l>=1} k*l^2*x^lcm(k, l)/(1 - x^lcm(k, l)). - Miles Wilson, Jul 10 2025