A379818 a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) + a(A025480(n-1)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
1, 1, 4, 1, 10, 4, 10, 1, 22, 10, 28, 4, 49, 10, 22, 1, 46, 22, 64, 10, 118, 28, 64, 4, 190, 49, 118, 10, 190, 22, 46, 1, 94, 46, 136, 22, 256, 64, 148, 10, 424, 118, 292, 28, 478, 64, 136, 4, 661, 190, 478, 49, 796, 118, 256, 10, 1177, 190, 424, 22, 661, 46
Offset: 0
Programs
-
PARI
upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1] + v1[i\(4*A)+1])); v1
Formula
Conjecture: a(2^m*(2k+1)) = Sum_{j=0..m} (binomial(m+2, j+1) - binomial(m, j))*a(2^j*k) for m >= 0, k >= 0 with a(0) = 1.