A379819 Irregular table T(n, k), n >= 0, k >= 0, read by rows such that T(n,k) = f(n,k)/f(2^k-1,k) where f(n,k) is defined in Comments.
1, 1, 1, 4, 2, 1, 3, 1, 10, 4, 4, 8, 2, 10, 13, 3, 1, 7, 6, 1, 22, 8, 10, 18, 4, 28, 30, 6, 4, 20, 14, 2, 49, 47, 9, 10, 36, 22, 3, 22, 56, 31, 4, 1, 15, 25, 10, 1, 46, 16, 22, 38, 8, 64, 64, 12, 10, 46, 30, 4, 118, 102, 18, 28, 88, 48, 6, 64, 138, 68, 8, 4
Offset: 0
Examples
Irregular table begins: 1; 1, 1; 4, 2; 1, 3, 1; 10, 4; 4, 8, 2; 10, 13, 3; 1, 7, 6, 1; 22, 8; 10, 18, 4; 28, 30, 6; 4, 20, 14, 2; 49, 47, 9; 10, 36, 22, 3; 22, 56, 31, 4; 1, 15, 25, 10, 1;
Programs
-
PARI
upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1] + v1[i\(4*A)+1])); v1 \\ from A379818 R(k) = my(v1, M1, M2); v1 = upto(2^k*(2^k-1)); M1 = matrix(k, k, i, j, v1[2^(j-1)*(2^i-1)+1]); M2 = matrix(k, 1, i, j, v1[2^k*(2^i-1)+1]); M1 = matsolve(M1, M2) row(n) = my(A = hammingweight(n), v1, v2, v3); v1 = upto(2^A*(2*n+1)); v2 = vector(A, i, R(i)); v3 = vector(A, i, (v1[2^i*(2*n+1)+1] - sum(j=1, i, v1[2^(j-1)*(2*n+1)+1]*v2[i][j,1]))/(v1[2^i*(2*(2^i-1)+1)+1] - sum(j=1, i, v1[2^(j-1)*(2*(2^i-1)+1)+1]*v2[i][j,1]))); concat(v1[n+1], v3)
Formula
Conjectures: (Start)
f(2^k-1,k) = (k+1)*A130032(k+1) for k >= 0.
T(2^n-1, k) = Stirling2(n+1, k+1) for n >= 0, 0 <= k <= n.
Comments