A379820 Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} j! * Stirling1(n, j) * Stirling1(k, j).
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 2, 0, 0, 6, 8, 8, 6, 0, 0, 24, 28, 28, 28, 24, 0, 0, 120, 124, 114, 114, 124, 120, 0, 0, 720, 668, 558, 518, 558, 668, 720, 0, 0, 5040, 4248, 3234, 2744, 2744, 3234, 4248, 5040, 0, 0, 40320, 31176, 21768, 16888, 15446, 16888, 21768, 31176, 40320, 0
Offset: 0
Examples
Array begins: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... [1] 0, 1, 1, 2, 6, 24, 120, 720, 5040, ... [2] 0, 1, 3, 8, 28, 124, 668, 4248, 31176, ... [3] 0, 2, 8, 28, 114, 558, 3234, 21768, 167280, ... [4] 0, 6, 28, 114, 518, 2744, 16888, 119232, 952944, ... [5] 0, 24, 124, 558, 2744, 15446, 99730, 732120, 6045240, ... [6] 0, 120, 668, 3234, 16888, 99730, 669422, 5074992, 43062864, ... . Triangle T(n, k) = A(n - k, k) starts: [0] 1; [1] 0, 0; [2] 0, 1, 0; [3] 0, 1, 1, 0; [4] 0, 2, 3, 2, 0; [5] 0, 6, 8, 8, 6, 0; [6] 0, 24, 28, 28, 28, 24, 0; [7] 0, 120, 124, 114, 114, 124, 120, 0; [8] 0, 720, 668, 558, 518, 558, 668, 720, 0;
Crossrefs
The corresponding array with Stirling2 numbers is A108470.
Programs
-
Maple
A := (n, k) -> local j; (-1)^(n + k)*add(j!*Stirling1(n, j)*Stirling1(k, j), j = 0..k): seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);