cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379820 Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} j! * Stirling1(n, j) * Stirling1(k, j).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 2, 0, 0, 6, 8, 8, 6, 0, 0, 24, 28, 28, 28, 24, 0, 0, 120, 124, 114, 114, 124, 120, 0, 0, 720, 668, 558, 518, 558, 668, 720, 0, 0, 5040, 4248, 3234, 2744, 2744, 3234, 4248, 5040, 0, 0, 40320, 31176, 21768, 16888, 15446, 16888, 21768, 31176, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Jan 03 2025

Keywords

Examples

			Array begins:
  [0] 1,   0,   0,    0,     0,     0,      0,       0,        0, ...
  [1] 0,   1,   1,    2,     6,    24,    120,     720,     5040, ...
  [2] 0,   1,   3,    8,    28,   124,    668,    4248,    31176, ...
  [3] 0,   2,   8,   28,   114,   558,   3234,   21768,   167280, ...
  [4] 0,   6,  28,  114,   518,  2744,  16888,  119232,   952944, ...
  [5] 0,  24, 124,  558,  2744, 15446,  99730,  732120,  6045240, ...
  [6] 0, 120, 668, 3234, 16888, 99730, 669422, 5074992, 43062864, ...
.
Triangle T(n, k) = A(n - k, k) starts:
  [0] 1;
  [1] 0,  0;
  [2] 0,  1,    0;
  [3] 0,  1,    1,   0;
  [4] 0,  2,    3,   2,   0;
  [5] 0,  6,    8,   8,   6,   0;
  [6] 0,  24,  28,  28,  28,  24,   0;
  [7] 0, 120, 124, 114, 114, 124, 120,   0;
  [8] 0, 720, 668, 558, 518, 558, 668, 720, 0;
		

Crossrefs

The corresponding array with Stirling2 numbers is A108470.

Programs

  • Maple
    A := (n, k) -> local j; (-1)^(n + k)*add(j!*Stirling1(n, j)*Stirling1(k, j), j = 0..k):
    seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);