cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379832 The second Jordan totient function applied to the exponentially odd numbers.

This page as a plain text file.
%I A379832 #16 Jan 17 2025 03:38:47
%S A379832 1,3,8,24,24,48,48,72,120,168,144,192,288,360,384,360,528,384,504,648,
%T A379832 840,576,960,768,960,864,1152,1368,1080,1344,1152,1680,1152,1848,1584,
%U A379832 2208,2304,2808,1944,2880,2304,2880,2520,3480,3720,2880,4032,2880,4488,4224
%N A379832 The second Jordan totient function applied to the exponentially odd numbers.
%H A379832 Amiram Eldar, <a href="/A379832/b379832.txt">Table of n, a(n) for n = 1..10000</a>
%F A379832 a(n) = A007434(A268335(n)).
%F A379832 Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
%F A379832 Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
%F A379832 In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
%t A379832 f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
%o A379832 (PARI) j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
%o A379832 isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
%o A379832 list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));
%Y A379832 Cf. A007434, A065463, A185197, A268335, A374456 (analogous with J_1 = phi), A379715, A379716, A379717, A379718, A379833.
%K A379832 nonn,easy
%O A379832 1,2
%A A379832 _Amiram Eldar_, Jan 03 2025