This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379838 #59 Aug 11 2025 10:48:15 %S A379838 1,3,8,1,20,5,50,19,1,126,63,7,322,196,34,1,834,588,138,9,2187,1728, %T A379838 507,53,1,5797,5016,1749,253,11,15510,14454,5786,1067,76,1,41834, %U A379838 41470,18590,4147,416,13,113633,118690,58487,15223,1976,103,1,310571,339274,181181,53599,8528,635,15 %N A379838 Triangle read by rows: T(n,k) is the total number of humps with height k in all Motzkin paths of order n, n >= 2 and 1 <= k <= n/2. %H A379838 Xiaomei Chen, <a href="/A379838/b379838.txt">Table of n, a(n) for n = 2..401</a> %H A379838 Xiaomei Chen, <a href="https://arxiv.org/abs/2412.00668">Counting humps and peaks in Motzkin paths with height k</a>, arXiv:2412.00668 [math.CO], Dec 2024. %H A379838 David He and Daniel Tubbenhauer, <a href="https://arxiv.org/abs/2508.04054">Tensor powers of representations of (diagram) monoids</a>, arXiv:2508.04054 [math.RT], 2025. See p. 10. %F A379838 G.f.: Sum_{n>=2, k>=1} T(n,k) * x^n * y^k = x^2 * M^2(x) * y / ((1-x) * (1 - x^2 * M^2(x) * y)), where M(x) is the g.f. for A001006. %F A379838 T(n,k) = Sum_{i=0..n-2*k, i==n (mod 2)} (4*k) / (n-i+2*k) * binomial(n,i) * binomial(n-i-1,(n-i)/2+k-1). %F A379838 T(n,k) = Sum_{i=2k-1..n-1} A064189(i,2k-1). %F A379838 T(n,k) + T(n,k+1) = A064189(n,2k). %e A379838 Triangle begins: %e A379838 [2] 1; %e A379838 [3] 3; %e A379838 [4] 8, 1; %e A379838 [5] 20, 5; %e A379838 [6] 50, 19, 1; %e A379838 [7] 126, 63, 7; %e A379838 [8] 322, 196, 34, 1; %e A379838 [9] 834, 588, 138, 9; %e A379838 [10] 2187, 1728, 507, 53, 1; %e A379838 ... %o A379838 (Sage) %o A379838 def A379838_triangel(dim): %o A379838 M = matrix(ZZ, dim, dim) %o A379838 for n in (2..dim+1): %o A379838 for k in (1..math.floor(n/2)+1): %o A379838 for i in range(n-2*k+1): %o A379838 if ((n-i)%2)==0: %o A379838 M[n-2,k-1]=M[n-2, k-1]+(4*k)/(n-i+2*k)*binomial(n,i)*binomial(n-i-1,(n-i)/2+k-1) %o A379838 return M %Y A379838 Row lengths give A004526. %Y A379838 Row sums give A097861. %Y A379838 Column 1 gives A140662. %Y A379838 Cf. A064189. %K A379838 nonn,tabf %O A379838 2,2 %A A379838 _Xiaomei Chen_, Jan 04 2025