This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379841 #5 Jan 09 2025 14:59:11 %S A379841 1,4,6,8,10,11,12,14,16,17,18,19,20,22,23,24,26,27,28,29,30,31,32,33, %T A379841 34,35,36,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,58,59, %U A379841 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 %N A379841 Numbers that are the sum + product of some set of positive integers > 1. Positions of nonzeros in A379679. %e A379841 For sum + product = 14 we have two possibilities: {7} or {2,4}; so 14 is in the sequence. %t A379841 nn=100; %t A379841 strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; %t A379841 Intersection[Range[nn],Total[#]+Times@@#&/@Join@@Array[strfacs,nn]] %Y A379841 The version allowing 1's is A326178. %Y A379841 Positions of nonzeros in A379679. %Y A379841 The complement is A379680. %Y A379841 The non-strict version is A379839, complement A379670. %Y A379841 For unique (instead of some) we have A379842. %Y A379841 Arrays counting multisets by sum and product: A379666, A379671, A379678. %Y A379841 Counting and ranking multisets by comparing sum and product: %Y A379841 - same: A001055 (strict A045778), ranks A301987 %Y A379841 - divisible: A057567, ranks A326155 %Y A379841 - divisor: A057568, ranks A326149, see A326156, A326172, A379733 %Y A379841 - greater: A096276 shifted right, ranks A325038 %Y A379841 - greater or equal: A096276, ranks A325044 %Y A379841 - less: A114324, ranks A325037, see A318029 %Y A379841 - less or equal: A319005, ranks A379721 %Y A379841 - different: A379736, ranks A379722, see A111133 %Y A379841 A002865 counts partitions into parts > 1, strict A025147. %Y A379841 A318950 counts factorizations by sum. %Y A379841 A379681 gives sum + product of prime indices. %Y A379841 Cf. A069016, A319000, A319057, A319916, A325036, A326152, A379720, A379840. %K A379841 nonn %O A379841 1,2 %A A379841 _Gus Wiseman_, Jan 09 2025