A379843 Least number x such that there are exactly n sets of positive integers > 1 with sum + product = x. Position of first appearance of n in A379679.
2, 1, 14, 44, 47, 89, 119, 179, 159, 239, 335, 539, 599, 744, 359, 719, 839
Offset: 0
Examples
We have a(4) = 47 due to the following four sets: {5,7}, {2,15}, {3,11}, {2,3,6}.
Crossrefs
Arrays counting multisets by sum and product:
A318950 counts factorizations by sum.
Programs
-
Mathematica
nn=100; strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; s=Table[Length[Select[Join@@Array[strfacs,n],Total[#]+Times@@#==n&]],{n,nn}]; Table[Position[s,k-1][[1,1]],{k,mnrm[s+1]}]
Comments